Co-localization analysis of microscopy images:

Manders, Costes, Ripley, and spatial statistics

2023-11-29 postdoctoral training (T32)

Simon Flyvbjerg Nørrelykke

1

CCB Seminar Series 2023

Special: The Center for Computational Biomedicine (CCB) is hosting a joint seminar series with Image Analysis Collaboratory (IAC) at Harvard Medical School with a focus on best practices and leading tools for quantitative analysis of biomedical images.

iac.hms.harvard.edu

Analysis

Speaker: Beth Cimini, Ph.D.

Associate Director for Bioimage Analysis and a CZI Imaging Scientist in the Imaging Platform at the Broad Institute

Topic: Using high content analysis and deep learning to make the most of your microscopy

Date: Monday, December 11, 2023

Where: Gordon Hall, 106 Waterhouse Conference Room

Time: 10:00 AM – 11:00 AM ET

Virtual: Zoom link

In the age of the digital camera, microscopy images constitute a fantastically rich source of quantitative data. Yet, it currently remains difficult for most scientists to mine quantitative data from these images easily such that they can answer their important biological questions. In this talk, we will discuss open source tools that make quantitative image analysis both easier and more reproducible, as well as bioinformatic approaches allowing users to extract novel connections from their data.

About

- Harvard Medical School, Lecturer, 2022—present
 - Director of the Image Analysis Collaboratory, 2022—present
- ETH Zurich, Lecturer, 2015-2022
 - Head of Image and Data Analysis Group, 2012–2022
- Europe, self-employed, 2011–2012
- Princeton University, Department of Molecular Biology, visiting fellow, 2007–2010
- Max-Planck Institute for the Physics of Complex Systems, visiting scientist, 2004–2007
- LENS (European Laboratory for Non-Linear Spectroscopy), post doc, 2003–2004
- Niels Bohr Institute, Denmark, PhD in bio-physics, 2002

Nationality: Danish. Languages: Danish, English, German, some Italian/Spanish

Content

After these ~90 minutes you will have a better idea about

- 1. What the Image Analysis Collaboratory is
- 2. Manders' coefficients and Costes' randomization
- 3. Object based and Spatial statistics beyond colocalization
- 4. Some software you can use, free & commercial

What is the Image Analysis Collaboratory?

Hosted by department of Systems Biology

Located in Cell Biology (LHRRB 105) and Sys Bio (Arm 531D)

Works closely with local microscopy facilities

Collaborates with any department on the Quad

5

Expert in **image analysis** and **machine learning** Fluent in one or more **programming languages** Knowledgeable about **microscopy** and **statistics** Conversational in **biology** Intuitive feeling for **data** (Didn't go to Facebook, Google, Apple, biotech)

ChatGPT

Create a workout plan

for resistance training

Design a database schema

for an online merch store

Explain why popcorn pops to a kid who loves watching it in the microwave Write an email

to request a quote from local plumbers

2

Please write an ImageJ macro that uses StarDist to segment an image from fluorescence microscopy

Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version

https://chat.openai.com/

https://segment-anything.com/

https://segment-anything.com/

Mission

Reproducible extraction of meaningful information from images

Collaborate on projects with research labs (and hospitals)

- Train the next generation of bioimage analysts
- Teach bioimage analysis to life scientists
- Build and support bioimage analysis communities

Objective: Make as many Quad-groups as happy as possible!

Who we are, currently

Simon, PhD, director, lecturer

Physicist (theory & experiments); bioimage analyst (past 10 years)

Ranit Karmakar, PhD, specialist postdoc

Computer Engineer Joined August 2023

Antoine Ruzette, MSc, researcher

Bioengineer, bioinformatician (shared with Sean Megason) Joined ~June 2023

Assil Achour, research intern

Computer Scientist Joined September 2023

Who we are, incoming

 Named, PhD, specialist postdoc

 2024-Q1

 Named, PhD, staff

 2024-Q1

Unnamed, specialist postdoc(s) or staff

- CS, physics, comp bio, ...
- 5-year funding through ARPA-H

IAC Founding and Funding

Started: Operating since mid-September 2022

Now: Supported by internal HMS-Foundry grant Sean Megason and Sahand Hormoz (~2019)

Future: Working on it

grants, departmental buy-ins, ...

ARPA-H (small slice of \$104 million awarded to DARTS) A R P A 🕕

Core facility or research group?

Neither and both = Collaboratory (we don't currently charge for work)

Harvard Medical School & Friends

Project Overview (sample)

Sys Bio

Sys Bio

Segmentation and Quantification of Cells and Patterns in a Sorting Assay

Sean McGeary, PhD *PI: Allon Klein, PhD*

Aging in Chemically Induced Cells Thomas Dixon-McDougall, PhD

Detection and Classification of Cell

PI: David Sinclair, AO, PhD

Measuring the Polymerized Mass and Classifying Cell Type

Daniel De Souza, PhD PI: John Higgins, PhD

Measuring the Level of ER-Mito Stabilizers in Cell Body/Soma

Spatial Analysis of Cancer Cell

PI: Raja Bhattacharyya, PhD

Distributions in Stromae

Determining Protein and Lipid Contents in Raman Imaged Organs

Will Trim, PhD *PI: Marc Kirschner, PhD*

Sys Bio

Cell Bio

Tracking and Identification of Cell State

Noelle Ozimek PI: Randy King, MD, PhD

PI: Taru Muranen. PhD

Nina Kozlova, PhD

Project DIOS

Ranit Karmakar, PhD PI: Simon Nørrelykke, PhD All-Quad

Non-Quad

Non-Quad

Image Clinics / Consultations

"Image Clinics are consultations where we look at your data and discuss solutions to your image analysis needs"

Teaching at/from HMS

Jennifer's course

CSH Cold Spring Harbor Laboratory

Analytical and Quantitative Light Microscopy

A comprehensive and intensive course in light microscopy for researchers in biology, medicine, and material sciences.

Quantitative Imaging: From Acquisition to Analysis

CSHL Courses are intensive, running all day and often including evenings and weekends; students are expected to attend all sessions and reside on campus for the duration of the course.

With NIC Federico Gasparoli Anna Jost

Introduction to Image Analysis using ImageJ/Fiji

Two-day intro to quantitative bioimage analysis for life-scientists. No preparation, no homework.

With the Nikon Imaging Center.

17

Apr, '23

ARVARD

Apr, '23

Teaching at/from ETH: 50+ lectures, courses, and schools

EMBO *Practical Course*: **Advanced Methods** in Biolmage Analysis (2021)

Deep Learning for Image Analysis [EMBL Course] (2020–2022)

Zurich/Switzerland's Image and Data Analysis School, ETH/EPFL (2017–2022)

Introduction to Image Analysis using Fiji/ImageJ, ETH (2013–2022)

https://www.let-your-data-speak.com/#teaching

What is colocalization?

Protein Colocalization

http://www.olympusconfocal.com/applications/colocalization.html

Colocalization: The presence of two or more fluorophores on the same physical structure (in a cell).

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

Image Analysis

Collaboratory

What Problems are we trying to Solve?

Want: Show that one protein *cause* the presence of another **Have**: Images from various experimental conditions

Do: *Quantify* the degree to which information about one image allows us to make predictions about another image (mutual information, very loosely interpreted)

Limits: Typically cannot answer *causal* questions, only *correlative* ones

From slide by Romain Guit, BIOP, EPFL

Image

Analysis

Collaboratory

Dear Child has many Names

Co-localization **Co-expression Co-variation Co-distribution** Co-occurence Concomitance

Coincidence Analysis Overlap Analysis Spatial Correlation Proximity Analysis Simultaneous Localization Intersection Analysis

What's in a name? That which we call a rose By any other name would smell as sweet;

Imaging & Scales

https://c4science.ch/w/bioimaging_and_optics_platform_biop/teaching/probes/

GFP

Pixel of a camera at 100X

Biology scales

VS

Observation scales

Pixels grid of a camera at 100X

Biology scales

VS

Observation scales

GFP-diffraction limited signal

Pixels grid of a camera at 100X

Biology scales

VS

Observation scales

GFP-diffraction limited signal

Pixels grid of a camera at 100X

Biology scales

VS

Observation scales

XFP-diffraction limited signal GFP-diffraction limited signal

Pixels grid of a camera at 100X

Biology scales

VS

Observation scales

EPFL -

Biology scales

Observation scales

Biology scales

Observation scales

EPFL Noise Influence

Romain Guiet, BIOP, EPFL

Romain Guiet

EPFL Noise Influence

Romain Guiet, BIOP, EPFL

Romain Guiet

Pearson's

From slide by Romain Guiet, BIOP, EPFL

Image Analysis

Collaboratory
$$r_P = \frac{\operatorname{cov}(R,G)}{\sigma(R)\sigma(G)} = \frac{\sum_i (R_i - R_{avg})(G_i - G_{avg})}{\sqrt{\sum_i (R_i - R_{avg})^2 \sum_i (G_i - G_{avg})^2}}$$

Linear correlation coefficient, unlike Spearman's rank etc Invariant to affine intensity transformations

$$R_i^{new} = aR_i + b$$

Gain and offset, not quite exposure time and background

Not sensitive to patterns (non-linear relations)

https://en.wikipedia.org/wiki/Correlation

$$r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}} = 0.94$$

Anti-Correlation

$$r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}} = -0.94$$

Exclusion

$$r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}} = -0.29$$

Partial Overlap

$$r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}} = -0.016$$

Inclusion of small Objects

$$r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}} = 0.19$$

Exclusion of small Objects

$$r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}} = -0.047$$

Ascombes Quartet

Property	Value		
Mean of x	9		
Sample variance of x: s_x^2	11		
Mean of y	7.50		
Sample variance of y: s_y^2	4.125		
Correlation between x and y	0.816		
Linear regression line	y = 3.00 + 0.500x		
Coefficient of determination of the linear regression: ${\cal R}^2$	0.67		

https://en.wikipedia.org/wiki/Anscombe's_quartet

Clear interpretation (only one number), somewhat robust Doesn't return statistical significance Fails: unequal number of objects in images compared Solution: Manders' coefficients (or object based coloc)

Manders

From slide by Romain Guiet, BIOP, EPFL

MEDICAL SCHOOL

Image

Analysis

Collaboratory

Manders' coefficients

Eric Manders (then at University of Amsterdam) introduced the use, in confocal analysis, of Pearson's coefficient in 1992

Then came up with his own coefficients in 1993

Implemented in Imaris (commercial software)

Manders, E. M., Stap, J., Brakenhoff, G. J., Driel, R. van & Aten, J. A. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. *J. cell Sci.* **103** (**Pt 3**), 857–62 (1992).

MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. *J. Microsc.* **169**, 375–382 (1993).

Mander's Overlap Coefficient (MOC),
$$r_M$$

Introduced to avoid negative values; very similar to Pearson's

$$r_{M} = \frac{\sum_{i} R_{i} G_{i}}{\sqrt{\sum_{i} R_{i}^{2} \sum_{i} G_{i}^{2}}}; \quad r_{P} = \frac{\sum_{i} (R_{i} - R_{avg})(G_{i} - G_{avg})}{\sqrt{\sum_{i} (R_{i} - R_{avg})^{2} \sum_{i} (G_{i} - G_{avg})^{2}}}$$

Invariant to *linear* intensity transformations, e.g. $R_i^{new} = aR_i$

Ambiguous results when number of objects in R and G differs

Mander's Split Overlap Coefficients

Addresses ambiguity in the Overlap Coefficient, r_M

$$k_{1} = \frac{\sum_{i} R_{i}G_{i}}{\sum_{i} R_{i}^{2}}; \ k_{2} = \frac{\sum_{i} R_{i}G_{i}}{\sum_{i} G_{i}^{2}}; \text{ so that } r_{M}^{2} = k_{1}k_{2}$$

Each depends linearly on the intensity of the other channel

Mander's Colocalization Coefficients

Addresses linear dependence in the Split Overlap Coefficients

$$M_{1} = \frac{\sum_{i} R_{i}^{coloc}}{\sum_{i} R_{i}} \text{ and } M_{2} = \frac{\sum_{i} G_{i}^{coloc}}{\sum_{i} G_{i}}$$

where $R_{i}^{coloc} = \begin{cases} 0, & G_{i} = 0\\ R_{i}, & G_{i} > 0 \end{cases}$ and $G_{i}^{coloc} = \begin{cases} 0, & R_{i} = 0\\ G_{i}, & R_{i} > 0 \end{cases}$

Each is now "*independent*" of intensity in the other channel Or rather, now the dependence is *non-linear*

Mander's Colocalization Coefficients

$$M_1 = \frac{\sum_i R_i \mathbf{1}_{G_i > 0}}{\sum_i R_i} \text{ and } M_2 = \frac{\sum_i G_i \mathbf{1}_{R_i > 0}}{\sum_i G_i}$$

where $\mathbf{1}_{X > 0} = \begin{cases} 0, & X = 0\\ 1, & X > 0 \end{cases}$ is the indicator function

Note the *non-linearity* and *mixed dependence:*

 M_1 depends on *red intensity* in the *area in green* with positive intensity

 $\sum_{i} \mathbf{1}_{G_i > 0}$ = area in green channel used to "mask" red channel

Some Observations

 $M_1, M_2 \in [0,1]$, but tends to have values close to 1:

If there are no black pixels in the green channel $M_1 = 1$, and vice versa

 M_1 depends on red intensity and area in green with positive intensity; and vice versa for M_2

 M_1 and M_2 "are proportional to the amount of fluorescence of the co-localizing objects in each component [channel] of the image, relative to the total fluorescence in that component [channel]"

Example

MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. *J. Microsc.* **169**, 375–382 (1993).

Workflow

1. Preprocess images (noise reduction, illumination correction) 2. *Manually* set thresholds so "background" is black 3. Calculate r_M , M_1 , and M_2 (for all pixels above thresholds)

Example

MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. *J. Microsc.* **169**, 375–382 (1993).

Figures	Number of objects						
	Red	Green	Co-localization	r _P	r	M_1	M2
A A	36	36	36	1.00	1.00	1.00	1.00
AB	36	36	27	0.72	0.75	0.75	0.75
AC	36	36	18	0.44	0.20	0-50	0.50
AD	36	36	9	0-16	0.25	0.25	0.25
AE	36	36	0	-0-12	0.00	0.00	0.00
A F	36	27	9	0.22	0.29	0.25	0.33
AG	36	18	9	0.30	0.35	0.25	0.50
AH	36	9	9	0-48	0.20	0.25	1.00
AI	36	4	3	0.23	0.25	0.08	0.75

Number of objects

Figures	Red	Green	Colocalizing	ľР	r _M	M 1	M 2
AA	36	36	36	1.00	1.00	1.00	1.00
AE	36	36	0	-0.12	0.00	0.00	0.00
АН	36	9	9	0.48	0.50	0.25	1.00
AI	36	4	3	0.23	0.25	0.08	0.75

Here: $M_1\approx \frac{\rm Colocalizing}{\rm Red}$ Colocalizing and $M_2 \approx -$ Green

Images need to be *processed* before analysis, to turn the background into black pixels (denoise, bgr subtract, threshold)

Here, simply counting the number of spots gives M_1 and M_2 , but this is *misleading*—we measure *area* overlap, not *object* matching A single large blob could completely outweigh the many small ones

Manders is insensitive to Signal to Noise Ratios

For high SNRs, changes in SNR doesn't change r_M

For low SNR it becomes harder to threshold the background

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization - co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018).

Manders is sensitive to offset

Adding a bit of non-uniform background changes r_M by >20% Unless illumination correction is performed of course

Co-occurence versus Correlation

A: High co-occurrence ($r_M = 0.89$) but low correlation ($r_P = 0.11$). Pixel-intensities do not co-vary

B: Low co-occurrence ($r_M = 0.14$) but high correlation ($r_P \simeq 1$ in *overlapping* regions)

Manders' Coefficients

Straight forward interpretation, in some cases Address several shortcomings of Pearson's coefficient

Doesn't provide algorithm for setting thresholds Doesn't return statistical significance

Fails: When there is random overlap (and in other ways) **Solution**: Costes method

Costes

From slide by Romain Guiet, BIOP, EPFL

Image

Analysis

Collaboratory

Address shortcomings of Manders' approach by

- 1. Providing *correlation-based* algorithm for image thresholds
- 2. "Shuffle" one image to control for random overlap
- 3. Return *p*-values (statistical significance) for overlap

Workflow for Thresholds

1. Preprocess images (noise reduction, illumination correction) 2. Fit straight line (least squares) to red-green scatter plot 3. Iterate thresholds until $r_P = 0$ 4. Calculate M_1^{Costes} and M_2^{Costes} for all pixels above thresholds

Algorithmic Threshold Determination

Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993–4003 (2004).

Definition of Manders-Costes Coefficients

$$M_1^{Costes} = \frac{\sum_{R_i > T} R_i}{\sum R_i} \simeq M_1 \text{ and } M_2^{Costes} = \frac{\sum_{G_i > aT+b} G_i}{\sum G_i} \simeq M_2$$

Note the difference in *which* pixels are included in the nominator The thresholds *T* and aT + b depend on both *R* and *G*, through the straight-line fit G = aR + b

Controlling for Random Overlap

Densely packed objects tend to have random overlap To control for this create images without true colocalization

Simplest approach: rotate one channel 90 degrees Costes' approach: shuffle image blocks

Image blocks: Size of *typical object* of interest, but not smaller than size of *point spread function* (PSF)

Pixel Scrambling

Block-scrambling in 5% Overlap Image

Image Analysis Collaboratory

Block-scrambling in 20% Overlap Image

Scrambling of *either* pixels or blocks lead to conclusion of statistical significance of the $r_M = 0.21$ value with p=0.0004 and p=0.0002 respectively

Image

Collaboratory
Random Overlap and "Real" Colocalization

Green scrambled

Costes' Method

Automatic calculation of thresholds and control for random overlap Returns statistical significance (*p*-value)

Requires careful preprocessing of image, like Manders The two thresholds are not independent (linear dependence) **Fails**: When object don't overlap or background hard to filter out **Solution**: Object Based and Spatial Statistics

Object based

From slide by Romain Guiet, BIOP, EPFL

Image

Analysis

Collaboratory

Beyond Pixels: Object based Analysis

What if you are only interested in the *number* of interacting objects, irrespective of size, shape, and intensity?

Determine each object and decide if it *interacts* with another

Either segment and look for *overlap* Or, detect and measure *distances*

Gilles, J.-F., Santos, M. D., Boudier, T., Bolte, S. & Heck, N. DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis. *Methods* **115**, 55–64 (2017).

Collaboratory

Pixel versus Object based Analysis

Lagache, T., Sauvonnet, N., Danglot, L. & Olivo-Marin, J.-C. Statistical analysis of molecule colocalization in bioimaging. *Cytometry* **87**, 568–579 (2015).

Analysis

Collaboratory

Ripley's K and L Functions

Descriptive statistics for detecting *deviations* from spatial homogeneity

$$K(r) = (n\lambda)^{-1} \sum_{i \neq j} \mathbf{1}_{d_{ij} < r}$$
 and $L(r) = \sqrt{\frac{K(r)}{\pi}}$

For given *j*, the sum gives number of points closer than *r* For homogeneous 2D distribution $K(r) = \pi r^2$ and $L(r) = r^3$ (*n*: total number of points, λ : average density)

Tonini, Marj & Pedrazzini, Andrea & Penna, Ivanna & Jaboyedoff, Michel. (2012). Spatial pattern of landslides in Swiss Rhone Valley. Natural Hazards. 73. 10.1007/s11069-012-0522-9.

Is is really that simple? No!

Interpretation & Statistical significance

MEDICAL SCHOOL

Mama	Mathamatical Evangelon	Manulas
Paint suspending 1, 2	Mathematical Expression	Pacifices of all the phinete (and as legalizations) in 1.1
Number of objects (=1, 2	A-12	Positions of all the objects (spots or localisations) i = 1, 2 Number of objects is A
Distance between objects r= 1, 2	Ale al	Distance between (mean) shiert located at position #
Distance between objects	ort fr	and (red) object located at w
Boundary correction	k(x, y)	Corrects the under-estimation of object's neighbors near
		the ROI boundary (Supp. Methods)
Ripley's K function	$K(r) = \frac{\text{Volume}[RO]}{\sum} - 1_{(d(x_i)) \leq 1} k(x, y)$	Counts the number of (red) objects at a distance below (
		from (green) objects
Searching distances	$0 = r_0 < r_1 < \cdots < r_N$	Increasing distances around (green) objects where the K
		function is computed
Rings	$Ring(r_i, r_{i+1})$	Sub-region of the ROI that contains points (y) located at
	0.000	a distance $r_i \leq d(\mathbf{x}, \mathbf{y}) \leq r_{i+1}$ from a (green) object (\mathbf{x})
Ripley-based vector	$G = [K(r_{i+1}) - K(r_i)]_{C \in \mathbb{R} \times N-1}$	Counts the number of (red) objects inside concentric
All Summer and a	1 1 1 1 2 2 2 4 1 1 2 2 2 4 1 1	rings around (green) objects
Number of rings	N	Number of rings and length of the vector G
Mean of G	$\mu = [\mu_i]_{D \le i \le N-1}$ with $\mu_i = \pi (r_{i+1}^2 - r_i^2)$ (2D) or	Expected mean of G under the null hypothesis of A2
	$\mu_i = \frac{4}{3}\pi \left(r_{i+1}^3 - r_i^3 \right) (3D)$	randomness
Standard deviation of G	$\sigma = [\sigma_i]_{0 \le i \le N-1}$	Standard deviation of G under the null hypothesis of A ₂
	Manual Basels a Mediante a M	randomness (see Supplementary Methods)
Rings' overlapping matrix	$\mathbf{A} = [a_{ij}]_{0 \le i \le N-1} \text{ with, } a_{ij} = \frac{\text{Volume}[\text{Reg}(x_{i+1}) + \text{Reg}(x_{i+1})]}{\text{Volume}[\text{Reg}(x_{i+1})]}$	Proportion of the volume of Ring(r, r,+1) that overlaps
		with $Ring(r_{\mu}, r_{\mu 1})$
Reduced Ripley-based	$G^{\circ} = \frac{1}{\sigma} A^{-1} [G - \mu]$	Reduced Ripley-based vector with zero mean and unit
vector		variance (under the null hypothesis of A ₂ randomness)
Statistical threshold	$T(N) = \sqrt{2\log(N)}$	Statistical threshold to extract rings with coupled (red)
	AND A REAL PROPERTY AND A REAL PROPERTY.	objects.
Number of couples per ring	$C = \left[1_{G^{2} > T(N)} \frac{n_{i}n_{j}}{Value (ROV} (G_{i} - \mu_{j})\right]$	Statistical estimate of the number of couples per ring.
Couples without	2 vite [v = ma c0]	Number of couples corrected for rings' overlapping
overlapping	$C = A^{-1}C = \begin{bmatrix} I_{Q_{1}^{0} \ge T(N) \text{ Volume}[ROI]} G_{1}^{-1} \end{bmatrix}_{0 \le l \le N-1}$	and a cost of contract of the second to the
Number of pairs	man G	Total number of object pairs inside rings
Coupling probability	$P(x,y) = \sum_{i=0}^{N-1} \log a_i \log a_i$	Probability that a (green) object located at position x is
	CONTRACTOR CONTRACTOR	coupled with a (red) object located at y
Coupling index	Coupling Index(A _i) = $\frac{1}{n} \sum_{x,y} P(x, y)$	Mean number of coupled objects (i.e., probability-
	S invident	weighted) in each population A _{i=1,2}
Mean coupling distance	Mean Coupling Distance = $\frac{\sum_{x \in Y} P(xy)a(xy)}{\sum_{x \in Y} P(xy)a(xy)}$	Probability-weighted distance between coupled objects

Lagache, T. et al. Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics. Nat. Commun. 9, 698 (2018).

Example

Treating Objects as Objects

From slide by Romain Guiet, BIOP, EPFL

Image Analysis

Collaboratory

3D Microarchitecture of Bone Marrow Vascular System

Prof. Cesar Nombela-Arrieta Alvaro Gomariz

Results obtained without DL (DL happened while in review): "Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy" Gomariz et al Nature Communications, volume 9, Article number; 2532 (2018)

A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH)

Deep Tissue 3D imaging of thick Bone Marrow Slices

Deep Tissue 3D imaging of thick Bone Marrow Slices

A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH)

86

A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH)

Spatial Statistics

Examining effect of cells interacting with *each other*

(a) Independence

(b) Avoidance

(c) Clustering

Spatial Statistics

Examining effect of cells interacting with fixed *spatial structure*

(a) Poisson

(b) Attraction

(c) Repulsion

The volume is confined by the segmented sinusoidal network (Small World Model).

Spatial Statistics

(d) Distance transform

Empty space distance transform

(e) CDF distance transform

Panel (d) gives the "x-axis" (abscissa) in panel (e)

Alvaro Gomariz Carrillo, UZH & ETH

Spatial Statistics - CAR cells relative to sinusoids

CARcs accumulate in close physical contact with sinusoidal vessel walls.

b Rotated 3D view of a rendered volume from the segmented image **c** Side-by-side comparison of the CDF of the distance to nearest sinusoid evaluated at all positions, as well as evaluated at CARc centroids. Solid lines represent mean distance and envelopes indicate standard deviations.

From Research to Software

This analysis was done in MATLAB with Imaris (Bitplane) Bitplane then worked directly with Alvaro Gomariz Now, a spatial statistics module is available in Imaris Measures distances, performs 3D randomizations, returns probability distributions for experimental and simulated results

Object based and Spatial Statistics

Very powerful and flexible

Goes beyond standard colocalization

Mathematically demanding to do right

Requires segmentation or localization of objects

Fails: When objects cannot be defined/segmented **Solution**: Manders, Costes, better image analysis or data

Pixels versus Object- and Spatial-Analysis

Pixel based

Requires images to be carefully corrected first (Deceptively) easy and flexible to apply

Object based

Requires segmentation or detection Allows for full statistical analysis w. significance testing

Minimizing Imaging Artifacts

From slides by Romain Guiet, BIOP, EPFL

Software & Resources

ICY: Colocalization Studio & Spatial Analysis

Image / Se	equence Region Of In	levent travel	Detection & Tra	ckins Processing	Tools	Phanins			_					
- Cost	In Dustews	V fait con	- Extract	15 Revenue ander 1. IT	Add	117 December	conter 1 all Add.	Convert to stark	113 ANCE IMAGE					
Cores masters	In Conversion -	Canada ana	T Beenen -	-2 Farmer slow -2	Marrow	in Extract	frame Marrie	El Crampert to trem	ACR INCOME					
Save at	ID Ray converting	TT broke store	- Merce	of Rentown slice	Rentered	J. Review	trame 12 Berrow	(i) Advanced	C Creviman					
File	Copy / Convert	Plane 0(Y)	Channel (D	Stack (Z)	POSTI AND	all memory	Frame (T)	Z / T conversion	Rendering					
		Colocaliza	tion Chudle	0.000000000		~ 8	1000000	Sequence	ROI C Layer	History L 3				
orrelation method	di are reviewed in	Covolanca	Thear	son Analysis: Results				1.	Canvas		Constinut /	naturie		
agache, T. et al. 5	Statistical analysis of molecu	le colocalization in bioin	uging. Pearso	Pearson R N/A		0		· Histogram and colormap		ormap	- Spatial r	naiysis	uysis	
nometry Part A, 1	87061, 368-579. (2015)		p-val	e Pearson Iclosed formul	a) N/A	0	100	-	Sequence Prope	rties				
			log p-	value Pearson	N/A	0	and the second	Name	-		Detections	No selection	~	
			T Con	-Completion Analysis R	Deculta	11.7		Dimension	-		nb of frames between two analy	sis	1 0	
			Cross	Cross-Correlation 1 N/A		0	d t	Size	Size - Owner(x) -		Min. radius	Č.	1.0	
			Cross	Cross-Correlation 2 N/A		0	sion!	Date	- Time interval -		Min. Taurus		* v	
			W Mar	Manders Analysis: Results Manders M1 N/A Manders M2 N/A M1 (Mean of simulations) N/A M2 (Mean of simulations) N/A				Pixel size -			Max. radius		10 🗘	
			Mande			(A 0		CC -	later 👘	Metadata	Step Confidence level		1 0	
			Mande			/A 0						0	0.99 ^	
			M1 OM			A O				_	T Eveneration		0.33 4	
		M2 M	/A 0			unt .			_	V Export				
METHOD ICORREL	Calact Drife manual	CORRECATION	P-yal	ae Manders 1 (MC simulat	tions) N	A O					Export to Excel		1	
	Reset ROIs		ine e	value Manders 1	N	/A 0	A. C. M.				Ripley's K function Graph			
Sequences use	d for analysis		D-yah	a Marders 2 (M° simulat	tions) N			1		_	hiprey's it function draph			
Sequence 1 No	o Sequence		· • Inc. 0	value Manders 2		1A 0					Conclusion			
Channel 1		0	00	tanto Vi Analusia, Basala							Clusters			
Sequence 2 No	o Sequence		• Overla	in 1 (K (1 overlan 2) > The	eesheld	N/A O	1			_	Dispersion	6	-	
Channel 2		0	0 Overla	o 2 0 (2 overlap 1) > Th	reshold	N/A Q					Dispersion			
Spot detections	s (Overlap, Manders & Rip	ley analysis)	Overla	in 1 (Mean of simulations	1 F	N/A D				_				
Detections1 N	lo selection		w O	o 2 (Maan of simulations)		N/A O	ScriptEngineFactory			_	•	?		
Detections2 N	io selection		e overn	or Overlan 1.00° simulati	ines)	N/A O								
hreshold (T) for	overfap analysis	0.3	Ç O Ing o	value Overlag 1		N/A C		10.0						
ib of MC simulat	tions (p-value computatio	in) 11	C O Logp	a Overlan 7.00° simulati	1000	N/A O	22							
Export to Excel	-		0 1000	value Overlag 2	10	N/A O	1							
support up catel			a line of h	The ortempt		20		100						
•		-	1		?	_				_				
									Contraction of the local division of the loc	10				

ImageJ/Fiji: Coloc 2, DiAna, JACoP

😑 🕘 Cole	oc 2	
Channel 1	salt1PSF	
Channel 2	salt2PSF	
ROI or mask	<none></none>	
Threshold regression	Costes	÷
Display Shuffled Algorithms: I Li Histogram Cha Li Histogram Cha Li ICQ Spearman's Rank Manders' Correlat Kendall's Tau Ran 2D Intensity Hist Costes' Significar PSF	images nnel 1 nnel 2 Correlation tion ik Correlatio ogram nce Test 3.0	м
1SF	5.0	
Costes randomisations	10	

N 😋	Images to Image A : [Image B :	analyse:	
Filters imag Classic Spot Iter	e A ative	Filters imag Classic Spot Iter	e B ative
Filter type	Radius	Filter type	Radius
none 🗸	1.0	none 😪	1.0
Valide		Valide	
Threshold		Threshold	
min. Object Size (p	3	min. Object Size (p	3
Max. Object Size (pxl):	2000	Max. Object Size (pxl):	2000
Exclude objects on Exclude objects on	XY edges Z edges	Exclude objects on Exclude objects on	XY edges Z edges
acyricin	Go to a	nalyse	About

https://imagej.net/plugins/jacop

https://imagej.net/plugins/coloc-2

Imaris: Spatial Statistics

Expensive software. IAC has a full license

https://imaris.oxinst.com/

Final Words

"The first principle is that you must not fool yourself and you are the easiest person to fool."

— Richard P. Feynman

User-friendly software doesn't mean fool-proof results! You will always get numbers, but what do they mean?

Hopefully you have a better idea now!

Further Learning (https://iac.hms.harvard.edu/resources/)

image.sc Forum: Knowledge exchange and support

• <u>https://forum.image.sc/</u>

Online book with code: Introduction to Bioimage Analysis

• <u>https://bioimagebook.github.io/</u>

Online training: NEUBIAS Academy

- <u>https://www.youtube.com/c/NEUBIAS</u>
 - Deconstructing co-localisation workflows: A journey into the black boxes
 - Introduction to 3D Analysis with 3D ImageJ Suite

Inference

(plausible reasoning)

It is not Causal Analysis

Doesn't address interactions directly Cannot say if A causes B or vice versa

At best says how different from random the signal co-variation (intensity/location) is

Aristotelian Deductive Reasoning

Two <u>strong</u> syllogisms

Major premise: if A is true, then B is true

Minor premise: A is true (B is false)

Conclusion: therefore, B is true (A is false)

Condensed form: $A \implies B \iff \overline{B} \implies \overline{A}$

Aristotelian Deductive Reasoning

Major: If it rains (A), the pavement will get wet (B) **Minor**: It rains (A)

Conclusion: Therefore, the pavement will get wet (B)

Major: If it rains (*A*), the pavement will get wet (*B*) **Minor**: The pavement is **not** wet (\overline{B})

Conclusion: Therefore, it **didn't** rain (\overline{A})

106

Plausible Reasoning

Two **weak** syllogisms

Major premise: if A is true, then B is true

Minor premise: *B* is true (*A* is false)

therefore, A becomes more plausible **Conclusion**: (*B* becomes less plausible)

Probability Theory

Plausible Reasoning

Major: If it rains (A), the pavement will get wet (B)

Minor: The pavement is wet (B)

Conclusion: Therefore, it is more plausible that it rained (A)

But it could have been a garden sprinkler and not rain

Major: If it rains (*A*), the pavement will get wet (*B*) **Minor**: It **didn't** rain (\overline{A})

Conclusion: Therefore, it is **less** plausible that the pavement will be wet (B)

But the pavement could have been made wet by other means

Plausible Reasoning

An even weaker syllogism

- **Major** premise: If A is true, then B becomes more plausible
- **Minor** premise: B is true
- **Conclusion**: therefore, A becomes more plausible

109

110

Major: If it rains (A), the pavement is **more likely** to get wet (B) **Minor**: The pavement is wet (B)

Conclusion: Therefore, it is more plausible that it rained (A)

Maybe the pavement is covered by a tarp

Maybe a garden sprinkler was active nearby

Probability Theory

Jaynes derives two fundamental equations From which follow Bayes' and just about all else

Probability Theory The Logic of Science

Product rule

$$p(AB \mid C) = p(A \mid C)p(B \mid AC) = p(B \mid C)p(A \mid BC)$$

Sum rule

$$p(A \mid B) + p(\bar{A} \mid B) = 1$$

Aristotelian Logic and the Product Rule

Let C stand for the **major** premise

 $C \equiv A \implies B$

Then, note that, according to the strong syllogisms

 $p(AB \mid C) = p(A \mid C)$ and that $p(A\overline{B} \mid C) = 0$

Insert in product rule and get:

Strong syllogism 1:
$$p(B|AC) = \frac{p(AB|C)}{p(A|C)} = 1$$

Strong syllogism 2: $p(A|\bar{B}C) = \frac{p(A\bar{B}|C)}{p(\bar{B}|C)} = 0$

112

Plausible Reasoning and the Product Rule

Let *C* stand for the **major** premise

 $C \equiv A \implies B$

The product rule states

$$p(A \mid BC) = p(A \mid C) \frac{p(B \mid AC)}{p(B \mid C)}$$

According to the first weak syllogism and overall definition of \boldsymbol{p}

$$p(B|AC) = 1 (A \implies B) \text{ and } p(B|C) \le 1 \text{ (generally)}$$

Insert in product rule and get:

Weak syllogism 1: $p(A | BC) \ge p(A | C)$

E. T. JAYNES

Probability Theory

From the these follow the very useful **Extended sum** rule

$$p(A + B | C) = p(A | C) + p(B | C) - p(AB | C)$$

Directly applicable to colocalization questions

