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Special: The Center for Computational Biomedicine
(CCB) is hosting a joint seminar series with Image
Analysis Collaboratory (IAC) at Harvard Medical
School with a focus on best practices and leading
tools for quantitative analysis of biomedical images.
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http://iac.hms.harvard.edu

About

Harvard Medical School, Lecturer, 2022—present
 Director of the Image Analysis Collaboratory, 2022—present
ETH Zurich, Lecturer, 2015-2022
» Head of Image and Data Analysis Group, 2012—-2022
Europe, self-employed, 2011-2012
Princeton University, Department of Molecular Biology, visiting fellow, 2007-2010
Max-Planck Institute for the Physics of Complex Systems, visiting scientist, 2004—-2007
LENS (European Laboratory for Non-Linear Spectroscopy), post doc, 2003—-2004
Niels Bohr Institute, Denmark, PhD in bio-physics, 2002

Nationality: Danish. Languages: Danish, English, German, some Italian/Spanish
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Content

After these ~90 minutes you will have a better idea about

1. What the Image Analysis Collaboratory is

2. Manders’ coefficients and Costes’ randomization

3. Object based and Spatial statistics beyond colocalization
4. Some software you can use, free & commercial
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What is the Image Analysis Collaboratory?

Group of Bioimage Analysts

Hosted by department of Systems Biology ' '

Located in Cell Biology (LHRRB 105) and Sys Bio Arm 531D)

Works closely with local microscopy facilities

Collaborates with any department on the Quad

HARVARD v_;mﬁ:;:
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What is a Bioimage Analyst?

Expert in image analysis and machine learning |

Fluent in one or more programming languages | |
Knowledgeable about microscopy and statlstlcs
Conversational in biology

Intuitive feeling for data

(Didn’t go to Facebook, Google, Apple, biotech)
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https://bbbc.broadinstitute.org/bbbc/BBBC009
https://bbbc.broadinstitute.org/bbbc/BBBC009
https://bbbc.broadinstitute.org/bbbc/BBBC009
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
https://segment-anything.com/
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https://segment-anything.com/

Mission

Reproducible extraction of meaningful information from images

Collaborate on projects with research labs (and hospitals)
Train the next generation of bioimage analysts

Teach bioimage analysis to life scientists

Build and support bioimage analysis communities

Objective: Make as many Quad-groups as happy as possible!

@ HARVARD \ A ZSo
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Who we are, currently

Simon, PhD, director, lecturer
Physicist (theory & experiments); bioimage analyst (past 10 years)

Ranit Karmakar, PhD, specialist postdoc
Computer Engineer
Joined August 2023

Antoine Ruzette, MSc, researcher
Bioengineer, bioinformatician (shared with Sean Megason)
Joined ~June 2023

Assil Achour, research intern
Computer Scientist
Joined September 2023
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Who we are, incoming

alle Named, PhD, specialist postdoc
" Y 2024-Q1
L
& Named, PhD, staff
VY 202401
L
ol s’ Unnamed, specialist postdoc(s) or staff
' Y CS, physics, comp bio, ...
e 5-year funding through ARPA-H

o n
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|AC Founding and Funding

Started: Operating since mid-September 2022

Now: Supported by internal HMS-Foundry grant
Sean Megason and Sahand Hormoz (~2019)
Future: Working on it
grants, departmental buy-ins, ...

ARPA-H (small slice of $104 million awarded to DARTS) AR P A (O
Core facility or research group?

Neither and both = Collaboratory (we don’t currently charge for work)

ey S
@ HARVARD \ A ZSo
R S L B T RIS ratory



Harvard Me__dical Schol & Friends

-
[+ » &

HARVARD

MERICAL SCH0]

~ il

14



Project Overview (sample)

Segmentation and Quantification of
Cells and Patterns in a Sorting Assay

Sean McGeary, PhD

PI: Allon Klein, PhD

Measuring the Polymerized Mass
and Classifying Cell Type

Daniel De Souza, PhD
PI: John Higgins, PhD

Determining Protein and Lipid Contents
in Raman Imaged Organs

Will Trim, PhD
PI: Marc Kirschner, PhD

Tracking and Identification of Cell State

Noelle Ozimek
Cell Bio

PI: Randy King, MD, PhD

HARVARD
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Detection and Classification of Cell
Aging in Chemically Induced Cells

Thomas Dixon-McDougall, PhD
PI: David Sinclair, AO, PhD

Measuring the Level of ER-Mito
Stabilizers in Cell Body/Soma
PI: Raja Bhattacharyya, PhD

Spatial Analysis of Cancer Cell o
Distributions in Stromae s e
Nina Kozlova, PhD . F iy

PI: Taru Muranen, PhD

Project DIOS

Ranit Karmakar, PhD
PI: Simon Ngrrelykke, PhD

All-Quad
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Image Clinics / Consultations

“Image Clinics are consultations where we look at your data and discuss solutions to your image
analysis needs”
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Teaching at/from HMS

With NIC

Federico Gasparoli
Jennifer’s course Anna Jost

g THE UNIVERSITY OF CHICAGO

) MARINE BIOLOGICAL @ Cold Spring Harbor Laboratory
> LABORATORY

Analytical and Quantitative Quantitative Imaging: From Introduction to Image

Light Microscopy Acquisition to Analysis Analysis using ImageJ/Fiji
A comprehensive and intensive CSHL Courses are intensive, running Two-day intro to quantitative bioimage
course in light microscopy for all day and often including evenings analysis for life-scientists. No
researchers in biology, medicine, and and weekends: students are expected preparation, no homework.
material sciences. to attend all sessions and reside on With the Nikon Imaging Center.
campus for the duration of the course.
0 A—
HARVARD https://iac.hms.harvard.edu/teaching/ MG
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https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/
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eaching at/from ETH: 50+ lectures, courses, and schools

(éﬁiao EMBO EMBO Practical Course: Advanced Methods in
Practical Course Bjo|mage Analysis (2021)

Deep Learning for Image Analysis [EMBL Course]
(2020-2022)

Zurich/Switzerland’s Image and Data Analysis
School, ETH/EPFL (2017-2022)

Introduction to Image Analysis using Fiji/lmageJd,
ETH (2013-2022)
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What is colocalization?
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Protein Colocalization

Vinculin Actin
Alexa568 Alexa488

Combined

http://www.olympusconfocal.com/applications/colocalization.html

Colocalization: The presence of two or more fluorophores on the same physical structure (in a cell).

ey 1D
E HARVARD vy
MEDICAL SCHOOL From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz Collaboratory



What Problems are we trying to Solve?

Want: Show that one protein cause the presence of another
Have: Images from various experimental conditions

Do: Quantify the degree to which information about one image allows

us to make predictions about another image (mutual information, very
loosely interpreted)

Limits: Typically cannot answer causal questions, only correlative ones
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Decision Tree

Only Blobs — "
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Dear Child has many Names

Co-localization Coincidence Analysis
Co-expression Overlap Analysis
Co-variation Spatial Correlation
Co-distribution Proximity Analysis
Co-occurence Simultaneous Localization
Concomitance Intersection Analysis

What's in a name? That which we call a rose
@ HARVARD By any other name would smell as sweet; g



Imaging & Scales
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25

Hila Cill

Regd Db el



https://c4science.ch/w/bioimaging_and_optics_platform_biop/teaching/probes/
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Biology scales

VS

Pixel of a camera

at 100X Observation scales
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Biology scales

VS

Observation scales

Pixels grid of a camera at 100X
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GFP-diffraction limited signal

Biology scales

VS

Observation scales

Pixels grid of a camera at 100X
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GFP-diffraction limited signal

Biology scales

VS

Observation scales

Pixels grid of a camera at 100X



Pixels grid of a camera at 100X

Biology scales

VS

Observation scales
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Biology scales

Observation scales



Biology scales
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Pearson’'s

- C\ G Image
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Decision Tree

Only Blobs — "
Objects? — ¢

NO

Objects?

Pearson
Correlation

l\h Cell/Region

staining

HARVARD
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From slide by Romain Guiet, BIOP, EPFL
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Pearson’s Correlation Coefficient

COV(R, G) - zi (Rz avg)(G avg)
G(R)G(G) \/ Zi (Rz R Ravg)2 Zi (Gz avg)2

Linear correlation coefficient, unlike Spearman’s rank etc

Fp =

Invariant to affine intensity transformations

Gain and offset, not quite exposure time and background

@ HARVARD 1_&5“53:
VL LI AL SO eyl oratory



38

Pearson’s Correlation Coefficient

! 0.8 0.4 0 !
1 1 | | _1 .
/,»' e - . . .
/ // - .__,/"“ r—— e © — . \\\\ \\
0 0 0
&, $
Rl e
F Pt

Not sensitive to patterns (non-linear relations)

ey 1D
Image
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https://en.wikipedia.org/wiki/Correlation

Pearson’s Correlation Coefficient

Channel 1 Channel 2 Combined

Z,- (Ri _ Ravg)(Gi _ Gavg)

v 2B = R 2, (Gi = G

ﬁ HARVARD
MEDICAL SCHOOI From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz
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Anti-Correlation

Channel 1 Channel 2 Combined

Zi (Ri _ Ravg)(Gi _ Gavg)
rp =
\/ Zi (Rz - Ravg)2 z,- (Gz - Gavg)2

= —0.94

L S
HARVARD Y ocaires |
MR AL s From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz | Cotlaboratory |
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Exclusion

Channel 1 Channel 2 Combined

Z,- (Rl _ Ravg)(Gi _ Gavg)

rp = =029
\/Zi (Rl - Ravg)2 Zi (Gz o Gavg)2

F. i S
H ddl. R\'r'll.lﬁl. R D v 'An:.]l:::
MEDICAL SCHOOL From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz  Collaoratory
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Partial Overlap

Channel 1 Channel 2 Combined

Z,- (Rl _ Ravg)(Gi _ Gavg)

rp = = -0.016
\/Zi (Rl - Ravg)2 Zi (Gz o Gavg)2

o S
H ddl. R\'r'll.lﬁl. R D " 'A]:]l:::
MEDICAL SCHOOL From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz Collsoratory
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Inclusion of small Objects

Channel 1 Channel 2 Combined

Z,- (Rl _ Ravg)(Gi _ Gavg)

rp = = (.19
\/Zi (Rl - Ravg)2 Zi (Gz _ Gavg)2
-
EHARVARD \ A Fue
MEDICAL SCHOD! From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz Cotlaboratory
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Exclusion of small Objects

Channel 1 Channel 2 Combined

Z,- (Rl _ Ravg)(Gi _ Gavg)

rp = = —0.047
\/Zi (Rl - Ravg)2 Zi (Gz _ Gavg)2
-
EHARVARD \ A Fue
MEDICAL SCHOD! From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz Cotlaboratory
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Ascombes Quartet

Property Value
Mean of x ]
Sampla varanca of x; sf 1
Meaan of y 7.50
Sample variance of . sf 4125
Correlation bebseen x and y 0.816
Linear regression lina ¥=3.00 + 0.500x

Coefficient of determination of the Bnear regression: R* 067

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
X3 X4
o a—,
HARVARD https://en.wikipedia.org/wiki/Anscombe's_quartet \A e
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https://en.wikipedia.org/wiki/Anscombe's_quartet

Pearson’s Correlation Coefficient

Clear interpretation (only one number), somewhat robust
Doesn’t return statistical significance

Fails: unequal number of objects in images compared
Solution: Manders’ coefficients (or object based coloc)
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Manders

- C\ G Image
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Decision Tree

Only Blobs — "
Objects? —

/YYES "o

\\"O Pearson
YES Correlation

Similar — Coefficient Image:

Costes’
\ : Yliv Randomization Global
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Manders’ coefficients

; s o ; 3 Y
Eric Manders (then at University of Amsterdam) introduced the
use, in confocal analysis, of Pearson’s coefficient in 1992

Then came up with his own coefficients in 1993
Implemented in Imaris (commercial software)

Manders, E. M., Stap, J., Brakenhoff, G. J., Driel, R. van & Aten, J. A. Dynamics of three-dimensional replication patterns during the
S-phase, analysed by double labelling of DNA and confocal microscopy. J. cell Sci. 103 ( Pt 3), 857-62 (1992).

MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. J.
Microsc. 169, 375-382 (1993).

Vo - A
EHAR\JARD A A s
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Mander’s Overlap Coefficient (MOC), ry,

Introduced to avoid negative values; very similar to Pearson’s

Z-RiGi
rM: l
V ZiRE,G?

Invariant to /inear intensity transformations, e.g. R"“" = aR,

Ambiguous results when number of objects in R and G differs

@ HARVARD \ A ZSo
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Mander’s Split Overlap Coefficients

Addresses ambiguity in the Overlap Coefficient, 7y,

Zi RiGi

. ziRiGi
— lelz —

2., G?

ki &y - so that 5, = kk,

Each depends linearly on the intensity of the other channel

@ HARVARD \ A ZSo
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Mander’s Colocalization Coefficients

Addresses linear dependence in the Split Overlap Coefficients

Z. Rl-COZOC z Gcoloc
Ml — l and M2 — Z G

Zi Ri

where R.COIOC — O, Gi =0 and G,COZOC — O’ Ri =0
| Ky Gi>0 | G, R >0

Each is now “independent’ of intensity in the other channel

Or rather, now the dependence is non-linear

@ HARVARD \ A ZSo
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Mander’s Colocalization Coefficients

z,- Ri 1G,->() z,- Gi 1Rl~>0
M, = and M, =
Zi Ri Zi Gi
where 1, = {O’ X=0 is the indicator function
X>0 —
I, X>0

Note the non-linearity and mixed dependence:

M, depends on red intensity in the area in green with positive intensity

Z 1. = area in green channel used to "mask" red channel

l
@ HARVARD LR Zim



Some Observations

M, M, € [0,1], but tends to have values close to 1:

If there are no black pixels in the green channel M, = 1, and vice
versa

M, depends on red intensity and area in green with positive

intensity; and vice versa for M,

M, and M, “are proportional to the amount of fluorescence of the

co-localizing objects in each component [channel] of the image,
relative to the total fluorescence in that component [channel[’

@ HARVARD \ A ZSo
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Example

Red threshold

b 192
> :
e 28|
ik
1]
o B4

Green threshold

0l B4 128 |92 2586
Red value
Ly 3
HARVARD MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. Y,Yum:

MEDICAL SCHOOL J. Microsc. 169, 375-382 (1993). _ -



Workflow

1. Preprocess images (noise reduction, illumination correction)
2. Manually set thresholds so “background” is black

3. Calculate ry;, M, and M, (for all pixels above thresholds)

@ HARVARD \ A ZSo
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Example

Number of obbects

Figures Red {ireen Co-locallzation re r My M;

(an 6 36 16 100 L0 100 1401 )
TE £ r ¥ U7 [} Dok e 1Dek S

AL i b L& (dd 500 50 T

AD ih b 4 016 025 0-25 025
( AE 16 16 { =012 LR (CH 0 )

AF i 27 9 022 029 r25 033

A G 16 18 o {1 301 {18 25 {1 51
(AH Ik ] q 0-48 050 025 1050

A1 76 1 T i E (iDL 0-08 o
Number of objects

Figures Red Green Colocalizing re rm M; M
AA 36 36 36 1.00 1.00 1.00 1.00

MANDERS,E. M. M., VERBEEK, F.J. &
ATEN, J. A. Measurement of co-localization of Al 36 4 3 0.23 0.25 0.08 0.75

objects in dual-colour confocal images. J.
Microsc. 169, 375-382 (1993).

Colocalizing Colocalizing
Here: M| ~ and M, ~ o
HARVARD Red Green O Yonaiyee

MERIC AL SO




Comments on Example

Images need to be processed before analysis, to turn the
background into black pixels (denoise, bgr subtract, threshold)

Here, simply counting the number of spots gives M, and M,, but
this is misleading—we measure area overlap, not object matching

A single large blob could completely outweigh the many small
ones

@ HARVARD \ A ZSo
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Manders is insensitive to Signhal to Noise Ratios
SNR=19 SNR=12 SNR=8

MOC=0.695 MOC=0.690 MOC=0.672

For high SNRs, changes in SNR doesn’t change ry,

For low SNR it becomes harder to threshold the background

o
E HARVARD L&

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization — co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018). Collaboratory
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Manders is sensitive to offset

Signal only Background Signal+background

2 pbrightness
MOC=0.691 MOC=0.842

Adding a bit of non-uniform background changes r;,; by >20%

Unless illumination correction is performed of course

- A
Image |

v-vﬁnalﬂ.is
T

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization — co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018). . Collaboratory |
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Co-occurence versus Correlation

. A: High co-occurence (1, = 0.89)
150 8 but low correlation (rp = 0.11).
Pixel-intensities do not co-vary
50 1 200 250
Cabor 1 Pixel Intensity
D
259 ] [ B: Low co-occurence (r;; = 0.14)
2 o |, but high correlation (rp ~ 1 in
g™ overlapping regions)
§1nn_ :
S0 S = "
50 100 150 200 250
Color 1 Pixel Intensity
(sl
E HARVARD \ A ZSo
MELRICAL SCHOGI Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization — co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018). Collaboratory



Manders’ Coefficients

Straight forward interpretation, in some cases
Address several shortcomings of Pearson’s coefficient

Doesn’t provide algorithm for setting thresholds
Doesn’t return statistical significance

Fails: When there is random overlap (and in other ways)
Solution: Costes method

@ HARVARD \ A ZSo
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Costes

- C\ G Image
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Decision Tree

Only Blobs — "
Objects? —

/YYES "o

Objects?
wAO Pearson
YES Correlation _
Similar  — Coefﬂment Costos Image:
\ » A Randomization Global
CeII/Reglon Analysis
staining

coefficients

H ARVARD _
EDICAL SCHOOI From slide by Romain Guiet, BIOP, EPFL




Rationale for Costes

Address shortcomings of Manders’ approach by
1. Providing correlation-based algorithm for image thresholds
2. “Shuffle” one image to control for random overlap
3. Return p-values (statistical significance) for overlap

@ HARVARD \ A ZSo
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Workflow for Thresholds

1. Preprocess images (noise reduction, illumination correction)
2. Fit straight line (least squares) to red-green scatter plot

3. lterate thresholds until rp = 0

4. Calculate MICOSteS and Mzcmtes for all pixels above thresholds

@ HARVARD \ A ZSo
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Algorithmic Threshold Determination

r=0 r=025 r=04

lc=ax k+b

Green intensity (1)

I=T:
=Ty
Red intensity (1)

o n
aas -~ mage
HARVARD R

W MIDICAL SCHOOI Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993—4003 (2004). Collaboratory



Definition of Manders-Costes Coefficients

2 G,
Gl>aT+b !
~ M, and MS" = ~ M,

2. G

R.
MCostes _ zRi>T l

XK

Note the difference in which pixels are included in the nominator

The thresholds 7 and aT + b depend on both R and G, through
the straight-line fit G = aR + b

@ HARVARD \ A ZSo
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Controlling for Random Overlap

Densely packed objects tend to have random overlap

To control for this create images without true colocalization

Simplest approach: rotate one channel 90 degrees
Costes’ approach: shuffle image blocks

Image blocks: Size of typical object of interest, but not smaller than
size of point spread function (PSF)

. O G IIIII
@ HARVARD A A
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Pixel Scrambling

0.07 1 .

=
=
&

P-value = 0.965

=
=
h

=
=
Lo

p=0.035

=
=
Tad

Probability density of »

on
O Vonaiysis

Collabozatory
. o

HARVARD

MEDICAL SCHOOI Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86,3993-4003 (2004).
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Block-scrambling in 5% Overlap Image

07" ,5';'6.'666'2'"'\"'
~ 0.6 1
kS A
é“ 0.5 : E L™ 0.052
5§ 04 B
203 ,' Pixel-scrambling
s | = =0.17
S 0.2 & P
£ 0.1 -
0 - —— > \
Pixel-scrambling: Wrong conclusion!
(that overlap is not stat. significant) -0.2 -0.1 0 , 0.1 0.2 03
H ARVARD ";P_;MZT;;’,-Z\

EDICAL SCHOOL Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993—-4003 (2004).  Collaboratory |
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Block-scrambling in 20% Overlap Image

0.7
~ 0.6
o i
o r
2 05 - % r.. =021
Z ' 5
5 0.4 .' =
—d [}
203 ;
3 -
= 0.2 t
Scrambling of either pixels or blocks E 0.1 - ‘! |
lead to conclusion of statistical ' — - B
significance of the r;, = 0.21 value with 0 - _— - 00—
p=0.0004 and p=0.0002 respectively 0.3 0.2 0.1 0.0 01 0.2 0.3
y
- S
HARVARD A A o

MEDICAL SCHOM Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993—4003 (2004). | Collaboratory |



Random Overlap and “Real” Colocalization

Green scrambled

<ry>~=0.1

Scramble green 1000 times

a -
H] 03 4 L il 1

Scramble green 1000 times 100

04 085
MOC

EHARVARD

104 Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization — co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018).
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Costes’ Method

Automatic calculation of thresholds and control for random overlap

Returns statistical significance (p-value)

Requires careful preprocessing of image, like Manders

The two thresholds are not independent (linear dependence)
Fails: When object don't overlap or background hard to filter out
Solution: Object Based and Spatial Statistics

xxxxx
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Object based

(il
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Decision Tree

Only Blobs — "
Objects? —

/YYES "o

\\"O Pearson
YES Correlation

Similar — Coefficient Image:

Costes’
\ : Yliv Randomization Global
NO Cell/Region Ana|ySiS
staining —,

NO

Objects?

Manders’
coefficients

Imag

o
HARVARD _ _ , ¥, e
MEDICAL SCHOOI From slide by Romain Guiet, BIOP, EPFL | Eom;;?,
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What if you are only interested in the number
of interacting objects, irrespective of size,
shape, and intensity?

Determine each object and decide if it
interacts with another

Either segment and look for overlap
Or, detect and measure distances

§F HARVARD
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B CRrAAT-CRTTr B Dintsrce sdga-sgoe

Gilles, J.-F., Santos, M. D., Boudier, T., Bolte,

S. & Heck, N. DiAna, an Image] tool for

object-based 3D co-localization and distal&ge A

analysis. Methods 115, 55-64 (2017). Image
"-Yﬁnal:rsis

Collaboratory



Pixel versus Object based Analysis

C - Pixel-based methaods
Signal overlap
A - Fluorescence Imaging B - Denoising
(Green+ Red channels) Spots detection

Loy

- Object-based methods
Spatial analysis

HARVARD Lagache, T., Sauvonnet, N., Danglot, L. & Olivo-Marin, J.-C. Statistical analysis of molecule colocalization in bioimaging.
MEDICAL SCHOOL Cytometry 87, 568-579 (2015).

78




Treating Objects as Points

Nearest Neigbor

B - Representation as a *»
Marked Point Process

A - Dual-channel imaging
and spot detection

I o=
5 S 1(d; <)
|7 ~ e i

79

Ripley's K function

S(r) statistical
colocalization

=== = odel fitting

-percentage of colocalization
-colocalization distance

HARVARD

WEDICAL SCHO0

Cytometry 87,568-579 (2015).

Lagache, T., Sauvonnet, N., Danglot, L. & Olivo-Marin, J.-C. Statistical analysis of molecule colocalization in bioimaging.

|
3| r) : 1(d } 84, 7, %)
1 Tig
1 =1 Bernirrddary
carreciiomn
ey S

Image
'-Yﬂnal?sis
Collaboratory
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Ripley's K and L Functions

[ ]
o " or '
Descriptive statistics for detecting deviations from spatial AT
. a L]
homogeneity .
(r) Tonini, Marj & Pedrazzini, Andrea & Penna, Ivanna &

K I/‘ — nﬂ — 1 1 a nd L r — —_— Jaboyedoff, Michel. (2012). Spatial pattern of landslides in
- d <r - Swiss Rhone Valley. Natural Hazards. 73. 10.1007/
y 71- $11069-012-0522-9.
17

For given j, the sum gives number of points closer than r

Statistically
=gignificant
disparsion
atlarger
distances

For homogeneous 2D distribution K(r) = zr? and L(r) = r

(n: total number of points, A: average density)

rd
ved - Spatial P
——— Expecied - Random Spatial Patber
_ | https://pro.arcgis.com/en/pro-app/latest/tool- & = PR
-;;','-‘ H A R"-r"'.-"!"u R B reference/spatial-statistics/h-how-multi- v YM?;
ey [ IARVARL distance-spatial-cluster-analysis-ripl.htm Collaboratory



https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm

Is is really that simple? No!

Interpretation & Statistical significance

Rings with couplad
spolsfocakzalions

Statitical threshold

L -

u‘_EuupIing probability 1

|

Single Coupled

HARVARD

MEDRICAL SO0

Lagache, T. et al. Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics. Nat. Commun. 9, 698 (2018).

Table 2 Mathematical varlables

Miarme Mstheruties Exprosaien

Point-process i=1, 2 Ay Positions of all the objects (spots or localisabors) i =1, ¥

Muember of objects (=1, 3 Ay Mumber of objects in A

Distance bolvwien objecls Am § Distance batwedn (Eriend cbiecl lecated al positson N

and {red} object locabed al ¥

Bovndary correction im ¥} Corrects the under-estimation of object's neighbors near
) the RO boundary {Supp. Methods)

Ripliny's K function K= “?‘:T,E-E' Vgt %, Counts the rember of fred) chjects al a disbecn bedow

Searching distarses
Rings
Ripley-basad wecicr

Mesmber of dngs
Maan of &

Standard deviabion of @
Rings’ averlapging mardrix
Raduced Riplay-based
wesChow

Stathical theeshold

Miarnber 6f couphes pe ring

Couples witFout
overlapping
Mismibisr ol pairg
Coupling probabdily

Coupling index

Mpan coupleg distanci

0 = e - - ey

Risglr. £ioi)

G = [Klfi) — K] g

M

B [ o with g = =6, — ) (200 or
H=gmleh, — '} {300

o= [l
-.--‘I"-u]':ll.l.'\.h': "'im-"l. - r-.".":!',;-“'r;}v.:h"i'-ll']
G =14 |G —

T{N) = +/ZTog (]

=

| P [ A TH |
| i Vet o) P

F mmm |

€= AE = [lgrarn e &) o
s L P
P'IJ.]'.:I = L."-: Testeie s
Cougding indexc(A,] = 2 % Plx.¥]

. I T P
Bl Coouplng Disloncd = g LB =T

From (greend objects

Increasing distancas sround (green) cbijscts where the K
function ks compuled

Subsregion of the RO that contains points () located at
a deslancs £ 5 0(X, W) 50, Inoem g Cgraan) Shiscl (2)
Countd (ke number of (red) chjects inside concentric
rings around {green) objects

Mumbaer of riegs and bength of the vector G

Expected maan of G under tha null Pypothests of A;
randomnais

Stancard deviation of G under the null hypothesi of A;
randomness (e Supplementary Methods)

Proportion of the wolume of Ringlr, £,,) that overlags
wirlh Risglr, )

Redhaced Ripley-based vector with perd mesn and wunl
variance {under the null hypothesis of As randomness)
Statistical trweshold 1o extract rings with coupled {red)
ohjncis.

Statinbical estmate of the number of couples per sing,

Mumber of couples corected for ings” overlapping.

Talal Pt ol abpct pars intide Fings

Frobability 1hat & {preen) ofpec letaled 8 pasilion x is
coupled with & (red) obiect located at y

Mean rasmber of coupled objects (e, probabilty-
wisghtidd in each popalalion Ao
Probabifty-waighbed distancs Bbagaen coupled obiscis

o n

"v,vm‘"‘ﬁi]

Collaboratory
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Example

Treating Objects as Objects

(il
@ HARVARD \ A fw



83

Decision Tree

Only Blobs — "
Objects? —

/YYES "o

\\"O Pearson
YES Correlation

Similar — Coefficient Image:

Costes’
\ : Yliv Randomization Global
NO Cell/Region Ana|ySiS
staining —,

NO

Objects?

Manders’
coefficients

Imag

o
HARVARD _ _ , ¥, e
MEDICAL SCHOOI From slide by Romain Guiet, BIOP, EPFL | Eom;;?,

.



3D Microarchitecture of Bone Marrow Vascular System

Prof. Cesar Nombela-Arrieta I%t Universitat

Alvaro Gomariz Sgay Zurich™
Results obtained without DL (DL happened while in review):
“Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone
marrow microenvironment by 3D microscopy”
Gomariz et al
Nature Communications, volume 9, Article number: 2532 (2018)

E HARVARD A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH) 2;,3;;:

Collaboratory
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https://www.nature.com/articles/s41467-018-04770-z
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Deep Tissue 3D imaging of thick Bone Marrow Slices

ﬁ HARVARD
SMEIC AL SOOI

| : Confocal
uCT ) ) Cryoprocessing microscopy

.f':" ‘L_ - |". il
e
o 0 —
- A

!

Segmentation
. — + analysis
‘$ “ }é x"._ .
@ _—d FC

FL-2

o5 =

j : O Vnaiyee
A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH) ._ Eom,m.’__
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Deep Tissue 3D imaging of thick Bone Marrow Slices

Clearing
cocktail

on -
HARVARD A A Jinua
MERICAL SO0 A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH) Cellauesary



A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH)



A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH)



Spatial Statistics

Examining effect of cells interacting with each other

(a) Independence (b) Avoidance (c) Clustering
;")h. } e G Image
ﬁ “ ';&l.l 1 F"Tx I:{. -L_ Alvaro Gomariz Carrillo, UZH & ETH 'E:::;r::::
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Spatial Statistics
Examining effect of cells interacting with fixed spatial structure

r/-‘

(a) Poisson (b) Attraction (c) Repulsion

The volume is confined by the segmented sinusoidal network (Small World Model).

C\ ~y
Image

'-Ynnal?sis

Alvaro Gomariz Carrillo, UZH & ETH Collaboratory

& HARVARD
ELY o e I



Spatial Statistics

Empty space distance transform

(d) Distance transform

1 _—
.a—'"_-_._d_-_
/~ Attraction
08 r
1/
E ol
|
ﬁ o4t | _
o Poisson /
5
0 0.2 .
" Repulsion
I 1 1 L
nﬂ 20 40 &0 B 10
Distance | um)

(e) CDF distance transform

Panel (d) gives the “x-axis” (abscissa) in panel (e)

HARVARD

MECAL SO0 Alvaro Gomariz Carrillo, UZH & ETH

120
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V_Vanaysis

Collaboratory
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Spatial Statistics - CAR cells relative to sinusoids 92

b Green<5pum Grey>5pum c 1 [
0.8}
w 06}
O
o
0.4
=~ Empty space sinusoids
0.2 —— Dist CARc-sinusoids

0 5 11(] 1I5 EI{] EIE 3[! 3I5 40
Distance (um)

CARcs accumulate in close physical contact with sinusoidal vessel walls.

b Rotated 3D view of a rendered volume from the segmented image

¢ Side-by-side comparison of the CDF of the distance to nearest sinusoid evaluated at all

positions, as well as evaluated at CARc centroids. Solid lines represent mean distance and
envelopes indicate standard deviations.

o n
HARVARD v

A. Gomariz et al, Nature Communications 9, 407 (2018). 'c,ﬂt:alvsis
ratory |
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From Research to Software

This analysis was done in MATLAB with Imaris (Bitplane)
Bitplane then worked directly with Alvaro Gomariz
Now, a spatial statistics module is available in Imaris

Measures distances, performs 3D randomizations, returns
probability distributions for experimental and simulated results

@ HARVARD \ A ZSo
VL LI AL SO eyl oratory



Object based and Spatial Statistics

Very powerful and flexible
Goes beyond standard colocalization

Mathematically demanding to do right
Requires segmentation or localization of objects

Fails: When objects cannot be defined/segmented
Solution: Manders, Costes, better image analysis or data

ey S
@ HARVARD \ A ZSo
VL LI AL SO eyl oratory



Pixels versus Object- and Spatial-Analysis

Pixel based
Requires images to be carefully corrected first
(Deceptively) easy and flexible to apply

Object based
Requires segmentation or detection
Allows for full statistical analysis w. significance testing

@ HARVARD \ A ZSo
VL LI AL SO eyl oratory
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Minimizing Imaging Artifacts

& = | r .. l\,,' L ~f "._' == e B o I = = TN
~ontro IJ timis res olgnal  _ . mefractive Ingdex
. A

BT

Make Science  Saturate Bleach Undersample Acquire Signal Refractive Index
without Control Sample Object Noise Backgr IIII_I|'|E| Mismatch

. : 5 =, gl v P |
(FIEE w ool 2T
Barck Erount MEatch

NOT

2l -
HARVARD From slides by Romain Guiet, BIOP, EPFL L&

AR AL SO0 Collaboratory |



Software & Resources
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ICY: Colocalization

98

Studio & Spatial Analysis

HARVARD

MERICAL SCH0]

https://icy.bioimageanalysis.org/

b | W e Pergicn CF It Imagal Ducertian k Fracking Frocsung Tosde Pugim
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https://icy.bioimageanalysis.org/

ImageJ/Fiji:

& @ Coloc 2

Channel 1 saltlPsF
Channel 2 salt2PSF o
BRI or mask <Mones

Threshold regression | Costes

| Show Save PDF Dialog
| Display Images in Result
< Display Shuffled Images

Algorithms:

| Li Histogram Channel 1

| LI Histogram Chanmne| 2
LI

| Spearman's Rank Correlation
Manders’ Correlation
| Kendall's Taw Rank Correlation
#| 20 Intensity Histogram

+| Costes' Significance Test

PSF 3.0

Costes randomisations 10

<,

Cancel oK

https://imagej.net/plugins/coloc-2

DiAna Labelisation

Images to analyse:

L &
ln-a-
- |

Image A !
Irraige B -
Filars imaga A Filbers imaga B
Classie Sl Neralie Clagsh S8l Meralkes
Fiker type Radius Filter bype Radius
MoNE 1.0 none 1.0
Wakde Wakde
ThEeahikd Theashiokd
e - w

min. Object Size (p... 3
Max, Object Size (padi; 2000

min, Ohjecr Sze ip... 3
Max Object Size (padlc 2000

Extlude cbjecis on XY sdoes
Exclude objecs on T edges

S grment

Enchide objects on XY edges
Enchude objects on I edges

S gressim

=0 ta analysa |

https://imagej.net/plugins/distance-analysis

+ Pearson's coefficlent

< M1 & M2 cosfficents

+ Wan Steensel's CCF

< Li's ICA

+ Objects based methods

HARVARD

R ICAL SCRICD]
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Coloc 2, DiAna, JACoP

Imagas 1o analyse

Image A sall PSF

Reset 2.
salt2 PSF

Anahrsis 1o perdiom
< Cwerlap coeff., k1 & k2
| Costes” automatic thresheold
< | Cytafluarogram
<+ Costes’ rand omizathan

Image B

Paramatas

Please refer o and cipe:

Balte 5, Cordelsres FP,

A guided our intg subcelkilar colocalization anabysis
i light microscopy. | Microsc. 2006;224:213-32.

Downlcadable from:
hatps:/ {dolorg /1001000 /). 1365 -28 18, 200601 F06.x

Co o Journal of Microscopy

b Threshold CCFH Moo Codtad" rend"” kg

Please check red labeled tabs belore lnwanching anabyss
Analyre

https://imagej.net/plugins/jacop

JEN =
Image |
v-vﬁndrﬂs

Collaboratory |


https://imagej.net/plugins/coloc-2
https://imagej.net/plugins/jacop
https://imagej.net/plugins/distance-analysis
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Imaris: Spatial Statistics

Volume Overlap Distance/ Proximity Attraction to Surface

OGO MARIS

INSTRUMEMTS

Expensive software. IAC has a full license oA
E HARVARD S _ \ A Fue
MEDICAL SCHOO) https://imaris.oxinst.com/ Collsboratory



https://imaris.oxinst.com/

Final Words

“The first principle is that you must not fool yourself and you are
the easiest person to fool.”

— Richard P. Feynman

User-friendly software doesn't mean fool-proof results!
You will always get numbers, but what do they mean?

Hopefully you have a better idea now!

@ HARVARD \ A ZSo
R S L B T RIS ratory



Further Learning (https://iac.hms.harvard.edu/resources/)

@ imageﬁgc Forum: Knowledge exchange and support

o https://forum.image.sc/

Online book with code: Introduction to Bioimage Analysis

o https://bioimagebook.qgithub.io/

Online training: NEUBIAS Academy

o https://www.youtube.com/c/NEUBIAS

o Deconstructing co-localisation workflows: A journey into the black boxes

o Introduction to 3D Analysis with 3D ImageJ Suite



https://iac.hms.harvard.edu/resources/
https://forum.image.sc/
https://bioimagebook.github.io/
https://www.youtube.com/c/NEUBIAS
https://www.youtube.com/watch?v=P2JvFe0hB_M
https://www.youtube.com/watch?v=OPC2kP-5By4

Inference

(plausible reasoning)

(il
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It is not Causal Analysis
Judea Pearl @

& Dana Mackenzie

Doesn’t address interactions directly
Cannot say if A causes B or vice versa

At best says how different from random the
signal co-variation (intensity/location) is

The New Science
of Cause and Effect

B o G Image
Y [IARVARD =

Collaboratory



Aristotelian Deductive Reasoning

Two strong syllogisms

Major premise: if A is true, then B is true
Minor premise: A is true (B is false)

Conclusion: therefore, B is true (A is false)

Condensed formA =—> B < B — A

§F HARVARD

Probability Theory

105

o
Image
v-vﬁnal:rsis

Collaboratory
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Aristotelian Deductive Reasoning

Maijor: If it rains (A), the pavement will get wet (B)

Minor: It rains (A)

Conclusion: Therefore, the pavement will get wet (B)

Major: If it rains (A), the pavement will get wet (B)

Minor: The pavement is not wet (B)

Conclusion: Therefore, it didn’t rain (A)

ey 1D
E HARVARD Y

Collaboratory
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Plausible Reasoning

Probability Theory

Two weak syllogisms

Major premise: if A is true, then B is true
Minor premise: B is true (A is false)

Conclusion: therefore, A becomes more plausible
(B becomes less plausible)

ey S
Image
"-Yﬁnal::s

Collaboratory
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The L 45

Plausible Reasoning s

Major: If it rains (A), the pavement will get wet (B)
Minor: The pavement is wet (B)

Conclusion: Therefore, it is more plausible that it rained (A)

But it could have been a garden sprinkler and not rain

Major: If it rains (A), the pavement will get wet (B)
Minor: It didn’t rain (A)

Conclusion: Therefore, it is less plausible that the pavement will be wet (B)

But the pavement could have been made wet by other means

ey S
E HARVARD SR

Collaboratory
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Plausible Reasoning

Probability Theory

An even weaker syllogism

Major premise: If A is true, then B becomes more plausible

Minor premise: B is true

Conclusion: therefore, A becomes more plausible

& 75
E HARVARD A R e

Collaboratory
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Plausible Reasoning

Major: If it rains (A), the pavement is more likely to get wet (B)
Minor: The pavement is wet (B)

Conclusion: Therefore, it is more plausible that it rained (A)

Maybe the pavement is covered by a tarp

Maybe a garden sprinkler was active nearby

ey S
E HARVARD R

Collaboratory



Probability Theory

Probability Theory

Jaynes derives two fundamental equations
From which follow Bayes’ and just about all else

Product rule
pAB|C) =pA|C)p(B|AC) = p(B|C)p(A|BC)
Sum rule
p(A|B) +p(A|B) =1

E HARVARD v_;M:T:z:

Collaboratory |
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Aristotelian Logic and the Product Rule

Let C stand for the major premise
C=A = B

Then, note that, according to the strong syllogisms
pP(AB|C) = p(A|C) and that p(AB|C) = 0

Insert in product rule and get:

L _ pAB|C)
Strong syllogism 1: p(B|AC) = =1
pA|C)
s . p(AB|C)
Strong syllogism 2: p(A|BC) = — =0
pB|C)

o
E HARVARD L &

Collaboratory
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Plausible Reasoning and the Product Rule

Let C stand for the major premise

C=A — B
The product rule states

p(B|AC)
p(B|C)
According to the first weak syllogism and overall definition of p
p(B|IAC)=1(A = B)and p(B|C) <1 (generally)
Insert in product rule and get:
Weak syllogism 1: p(A|BC) > p(A|C)

p(A|BC) =pA|C)

(sl
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Probability Theory

From the these follow the very useful
Extended sum rule

pA+B|C)=pA|[C)+pB|C)—-p(AB|C)

Directly applicable to colocalization questions
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