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Speaker: Beth &imini, Ph.D. 
$ssociate Director Ior Bioimage $nalysis and a &=, ,maging Scientist in 
the ,maging PlatIorm at the Broad ,nstitute 

Topic:  8sing high content analysis and deep learning to make 
the most oI your microscopy 

Date: Monday, December ��, 2023

:here: Gordon Hall, ��� :aterhouse &onIerence 5oom

7ime: ��:�� $M ± ��:�� $M E7

Virtual: Zoom link

In the age of the digital camera, microscopy images constitute a fantastically rich source of 
quantitative data. Yet, it currently remains difficult for most scientists to mine quantitative 
data from these images easily such that they can answer their important biological questions. 
In this talk, we will discuss open source tools that make quantitative image analysis both 
easier and more reproducible, as well as bioinformatic approaches allowing users to extract 
novel connections from their data.

CCB Seminar Series 2023

Special: 7he &enter Ior &omputational Biomedicine 
�&&B� is hosting a joint seminar series with Image 
Analysis Collaboratory (IAC) at HarYard Medical 

School with a focus on best practices and leading 
tools for quantitative analysis of biomedical images. 

iac.hms.harvard.edu 

http://iac.hms.harvard.edu


About

• Harvard Medical School, Lecturer, 2022—present 
• Director of the Image Analysis Collaboratory, 2022—present 

• ETH Zurich, Lecturer, 2015-2022 
• Head of Image and Data Analysis Group, 2012–2022 

• Europe, self-employed, 2011–2012 
• Princeton University, Department of Molecular Biology, visiting fellow, 2007–2010 
• Max-Planck Institute for the Physics of Complex Systems, visiting scientist, 2004–2007 
• LENS (European Laboratory for Non-Linear Spectroscopy), post doc, 2003–2004 
• Niels Bohr Institute, Denmark, PhD in bio-physics, 2002 

Nationality: Danish. Languages: Danish, English, German, some Italian/Spanish
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Content

After these ~90 minutes you will have a better idea about 

1. What the Image Analysis Collaboratory is 
2. Manders’ coefficients and Costes’ randomization 
3. Object based and Spatial statistics beyond colocalization 
4. Some software you can use, free & commercial

4



What is the Image Analysis Collaboratory?

Group of Bioimage Analysts 

Hosted by department of Systems Biology 

Located in Cell Biology (LHRRB 105) and Sys Bio (Arm 531D) 

Works closely with local microscopy facilities 

Collaborates with any department on the Quad

5



What is a Bioimage Analyst?

Expert in image analysis and machine learning 
Fluent in one or more programming languages 
Knowledgeable about microscopy and statistics 
Conversational in biology 
Intuitive feeling for data 
(Didn’t go to Facebook, Google, Apple, biotech)

6



https://chat.openai.com/

https://chat.openai.com/


Human red blood cells 
DIC microscopy
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https://segment-anything.com/
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https://segment-anything.com/
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Mission

Reproducible extraction of meaningful information from images 

Collaborate on projects with research labs (and hospitals) 
Train the next generation of bioimage analysts 
Teach bioimage analysis to life scientists 
Build and support bioimage analysis communities 

Objective: Make as many Quad-groups as happy as possible!
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Who we are, currently
Simon, PhD, director, lecturer 

Physicist (theory & experiments); bioimage analyst (past 10 years) 

Ranit Karmakar, PhD, specialist postdoc 
Computer Engineer 
Joined August 2023 

Antoine Ruzette, MSc, researcher 
Bioengineer, bioinformatician (shared with Sean Megason) 
Joined ~June 2023 

Assil Achour, research intern 
Computer Scientist 
Joined September 2023
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Who we are, incoming

Named, PhD, specialist postdoc 
2024-Q1 

Named, PhD, staff 
2024-Q1 

 Unnamed, specialist postdoc(s) or staff 
CS, physics, comp bio, …  
5-year funding through ARPA-H
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IAC Founding and Funding

Started: Operating since mid-September 2022 

Now: Supported by internal HMS-Foundry grant 
Sean Megason and Sahand Hormoz (~2019) 

Future: Working on it 
grants, departmental buy-ins, … 
ARPA-H (small slice of $104 million awarded to DARTS) 

Core facility or research group?  
Neither and both = Collaboratory (we don’t currently charge for work)
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Harvard Medical School & Friends
14

Quad



Project Overview (sample)

Tracking and Identification of Cell State 
Noelle Ozimek 
PI: Randy King, MD, PhD

Detection and Classification of Cell 
Aging in Chemically Induced Cells 
Thomas Dixon-McDougall, PhD 
PI: David Sinclair, AO, PhD Genetics

Cell Bio

Spatial Analysis of Cancer Cell  
Distributions in Stromae 
Nina Kozlova, PhD 
PI: Taru Muranen, PhD Non-Quad

Measuring the Level of ER-Mito 
Stabilizers in Cell Body/Soma 

PI: Raja Bhattacharyya, PhD Non-Quad

Segmentation and Quantification of 
Cells and Patterns in a Sorting Assay 
Sean McGeary, PhD 
PI: Allon Klein, PhD Sys Bio

Measuring the Polymerized Mass 
and Classifying Cell Type 
Daniel De Souza, PhD 
PI: John Higgins, PhD Sys Bio

Determining Protein and Lipid Contents 
in Raman Imaged Organs 
Will Trim, PhD 
PI: Marc Kirschner, PhD Sys Bio

Project DIOS 

Ranit Karmakar, PhD 
PI: Simon Nørrelykke, PhD All-Quad
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“Image Clinics are consultations where we look at your data and discuss solutions to your image 
analysis needs”

Image Clinics / Consultations

#50 
so far
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Analytical and Quantitative 
Light Microscopy 
A comprehensive and intensive 
course in light microscopy for 
researchers in biology, medicine, and 
material sciences.

Apr, ‘23

Quantitative Imaging: From 
Acquisition to Analysis 
CSHL Courses are intensive, running 
all day and often including evenings 
and weekends; students are expected 
to attend all sessions and reside on 
campus for the duration of the course. 

Apr, ‘23

Introduction to Image 
Analysis using ImageJ/Fiji 
Two-day intro to quantitative bioimage 
analysis for life-scientists. No 
preparation, no homework. 
With the Nikon Imaging Center.

Dec, ‘22 Nov, ‘22

With NIC 
Federico Gasparoli 
Anna JostJennifer’s course

Mar, ‘23

Nov, ‘23

https://iac.hms.harvard.edu/teaching/ 

Teaching at/from HMS
17

https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-05/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-04/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/2023-03/
https://iac.hms.harvard.edu/teaching/


Teaching at/from ETH: 50+ lectures, courses, and schools

EMBO Practical Course: Advanced Methods in 
BioImage Analysis (2021) 

Deep Learning for Image Analysis [EMBL Course] 
(2020–2022) 

Zurich/Switzerland’s Image and Data Analysis 
School, ETH/EPFL (2017–2022) 

Introduction to Image Analysis using Fiji/ImageJ, 
ETH  (2013–2022)

https://www.let-your-data-speak.com/#teaching 
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What is colocalization?

19



Protein Colocalization
20

Colocalization: The presence of two or more fluorophores on the same physical structure (in a cell). 
http://www.olympusconfocal.com/applications/colocalization.html

Actin 
Alexa488

Vinculin 
Alexa568

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

Combined



What Problems are we trying to Solve?

Want: Show that one protein cause the presence of another 
Have: Images from various experimental conditions 

Do: Quantify the degree to which information about one image allows 
us to make predictions about another image (mutual information, very 
loosely interpreted) 

Limits: Typically cannot answer causal questions, only correlative ones

21



Decision Tree
22

Segmentable  
Objects?

Only Blobs 
Objects?

Ripley’s K 
function

Nearest 
Neighbor

Similar 
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Pearson 
Correlation 
Coefficient

Cell/Region  
staining

Manders’ 
coefficients

YES

NO

YES

NO

YES

NO

Costes’ 
Randomization

Objects: 
Spatial 

Analysis

Image: 
Global 

Analysis
YES

NO

From slide by Romain Guit, BIOP, EPFL

Object / S
patial Analysis

Intensity / Pixel Based 



Dear Child has many Names

Coincidence Analysis 
Overlap Analysis 
Spatial Correlation  
Proximity Analysis 
Simultaneous Localization 
Intersection Analysis

23

Co-localization 
Co-expression 
Co-variation 
Co-distribution 
Co-occurence 
Concomitance

What's in a name? That which we call a rose  
By any other name would smell as sweet;



Imaging & Scales

24



Length Scales
25

https://c4science.ch/w/bioimaging_and_optics_platform_biop/teaching/probes/ 

Camera pixel

Pixel using a 
100x objective

https://c4science.ch/w/bioimaging_and_optics_platform_biop/teaching/probes/
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VS  

Observation scales

GFP

Pixel of a camera  
at 100X

Romain Guiet, BIOP, EPFL
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VS  

Observation scales

GFP

Pixels grid of a camera at 100X

Romain Guiet, BIOP, EPFL
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VS  

Observation scales
Pixels grid of a camera at 100X

GFP-diffraction limited signal 

Romain Guiet, BIOP, EPFL
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VS  

Observation scales
Pixels grid of a camera at 100X

GFP-diffraction limited signal 
XFP-diffraction limited signal 

Romain Guiet, BIOP, EPFL
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Pearson’s
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Decision Tree
36
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From slide by Romain Guiet, BIOP, EPFL
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Pearson’s Correlation Coefficient

 

Linear correlation coefficient, unlike Spearman’s rank etc 
Invariant to affine intensity transformations 

 

Gain and offset, not quite exposure time and background

rP =
cov(R, G)
σ(R)σ(G)

=
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2

Rnew
i = aRi + b

37



Pearson’s Correlation Coefficient
38

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

https://en.wikipedia.org/wiki/Correlation 

Not sensitive to patterns (non-linear relations)

https://en.wikipedia.org/wiki/Correlation


Pearson’s Correlation Coefficient
39

CombinedChannel 2Channel 1

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2
= 0.94



Anti-Correlation
40

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

CombinedChannel 2Channel 1

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2
= − 0.94



Exclusion
41

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

CombinedChannel 2Channel 1

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2
= − 0.29



Partial Overlap
42

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

CombinedChannel 2Channel 1

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2
= − 0.016



Inclusion of small Objects
43

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

CombinedChannel 2Channel 1

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2
= 0.19



Exclusion of small Objects
44

From slides by: Olivier Burri, Nicolas Chiaruttini, Romain Guiet & Arne Seitz

CombinedChannel 2Channel 1

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2
= − 0.047



Ascombes Quartet 
45

https://en.wikipedia.org/wiki/Anscombe's_quartet 

https://en.wikipedia.org/wiki/Anscombe's_quartet


Pearson’s Correlation Coefficient

Clear interpretation (only one number), somewhat robust 
Doesn’t return statistical significance 
Fails: unequal number of objects in images compared 
Solution: Manders’ coefficients (or object based coloc)

46



Manders
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Decision Tree
48
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Manders’ coefficients

Eric Manders (then at University of Amsterdam) introduced the 
use, in confocal analysis, of Pearson’s coefficient in 1992 
Then came up with his own coefficients in 1993 
Implemented in Imaris (commercial software) 

49

Manders, E. M., Stap, J., Brakenhoff, G. J., Driel, R. van & Aten, J. A. Dynamics of three-dimensional replication patterns during the 
S-phase, analysed by double labelling of DNA and confocal microscopy. J. cell Sci. 103 ( Pt 3), 857–62 (1992).

MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. J. 
Microsc. 169, 375–382 (1993).



Mander’s Overlap Coefficient (MOC),  rM

Introduced to avoid negative values; very similar to Pearson’s 

 ;    

Invariant to linear intensity transformations, e.g.  

Ambiguous results when number of objects in  and  differs

rM =
∑i RiGi

∑i R2
i ∑i G2

i

rP =
∑i (Ri − Ravg)(Gi − Gavg)

∑i (Ri − Ravg)2 ∑i (Gi − Gavg)2

Rnew
i = aRi

R G

50



Mander’s Split Overlap Coefficients

Addresses ambiguity in the Overlap Coefficient,  

 ;  ; so that  

Each depends linearly on the intensity of the other channel

rM

k1 =
∑i RiGi

∑i R2
i

k2 =
∑i RiGi

∑i G2
i

r2
M = k1k2

51



Mander’s Colocalization Coefficients
Addresses linear dependence in the Split Overlap Coefficients 

  and   

where   and  

Each is now “independent” of intensity in the other channel 
Or rather, now the dependence is non-linear

M1 =
∑i Rcoloc

i

∑i Ri
M2 =

∑i Gcoloc
i

∑i Gi

Rcoloc
i = {0, Gi = 0

Ri, Gi > 0
Gcoloc

i = {0, Ri = 0
Gi, Ri > 0

52



Mander’s Colocalization Coefficients

  and   

where    is the indicator function 

Note the non-linearity and mixed dependence: 

 depends on red intensity in the area in green with positive intensity 

 

M1 =
∑i Ri 1Gi>0

∑i Ri
M2 =

∑i Gi 1Ri>0

∑i Gi

1X>0 = {0, X = 0
1, X > 0

M1

∑
i

1Gi>0 = area in green channel used to "mask" red channel

53



Some Observations

, but tends to have values close to 1: 

If there are no black pixels in the green channel , and vice 
versa 

 depends on red intensity and area in green with positive 
intensity; and vice versa for  

 and  “are proportional to the amount of fluorescence of the 
co-localizing objects in each component [channel] of the image, 
relative to the total fluorescence in that component [channel]” 

M1, M2 ∈ [0,1]
M1 = 1

M1
M2

M1 M2

54



Example
55

MANDERS, E. M. M., VERBEEK, F. J. & ATEN, J. A. Measurement of co-localization of objects in dual-colour confocal images. 
J. Microsc. 169, 375–382 (1993).

Green threshold

Red threshold



Workflow

1. Preprocess images (noise reduction, illumination correction) 
2. Manually set thresholds so “background” is black 

3. Calculate , , and  (for all pixels above thresholds)rM M1 M2

56



Example
57

Number of objects
Figures Red Green Colocalizing rP rM M1 M2

AA 36 36 36 1.00 1.00 1.00 1.00

AE 36 36 0 -0.12 0.00 0.00 0.00

AH 36 9 9 0.48 0.50 0.25 1.00

AI 36 4 3 0.23 0.25 0.08 0.75

Here:   and   M1 ≈
Colocalizing

Red
M2 ≈

Colocalizing

Green

MANDERS, E. M. M., VERBEEK, F. J. & 
ATEN, J. A. Measurement of co-localization of 
objects in dual-colour confocal images. J. 
Microsc. 169, 375–382 (1993).



Comments on Example

Images need to be processed before analysis, to turn the 
background into black pixels (denoise, bgr subtract, threshold) 

Here, simply counting the number of spots gives  and , but 
this is misleading—we measure area overlap, not object matching 
A single large blob could completely outweigh the many small 
ones

M1 M2

58



Manders is insensitive to Signal to Noise Ratios

For high SNRs, changes in SNR doesn’t change  

For low SNR it becomes harder to threshold the background

rM

59

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization – co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018).



Manders is sensitive to offset

Adding a bit of non-uniform background changes  by >20% 

Unless illumination correction is performed of course

rM

60

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization – co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018).



Co-occurence versus Correlation

A: High co-occurence ( ) 
but low correlation ( ). 
Pixel-intensities do not co-vary 

B: Low co-occurence ( ) 
but high correlation (  in 
overlapping regions) 

rM = 0.89
rP = 0.11

rM = 0.14
rP ≃ 1

61

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization – co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018).



Manders’ Coefficients

Straight forward interpretation, in some cases 
Address several shortcomings of Pearson’s coefficient 

Doesn’t provide algorithm for setting thresholds 
Doesn’t return statistical significance 

Fails: When there is random overlap (and in other ways) 
Solution: Costes method
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Costes

63



Decision Tree
64
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From slide by Romain Guiet, BIOP, EPFL

Object / S
patial Analysis
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Rationale for Costes

Address shortcomings of Manders’ approach by 
1. Providing correlation-based algorithm for image thresholds 
2. “Shuffle” one image to control for random overlap 
3. Return p-values (statistical significance) for overlap

65



Workflow for Thresholds

1. Preprocess images (noise reduction, illumination correction) 
2. Fit straight line (least squares) to red-green scatter plot 

3. Iterate thresholds until  

4. Calculate  and  for all pixels above thresholds

rP = 0
MCostes

1 MCostes
2

66



Algorithmic Threshold Determination
67

Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993–4003 (2004).



Definition of Manders-Costes Coefficients

  and   

Note the difference in which pixels are included in the nominator 

The thresholds  and  depend on both  and , through 
the straight-line fit 

MCostes
1 =

∑Ri>T Ri

∑ Ri
≃ M1 MCostes

2 =
∑Gi>aT+b Gi

∑ Gi
≃ M2

T aT + b R G
G = aR + b

68



Controlling for Random Overlap
Densely packed objects tend to have random overlap 
To control for this create images without true colocalization 

Simplest approach: rotate one channel 90 degrees 
Costes’ approach: shuffle image blocks 

Image blocks: Size of typical object of interest, but not smaller than 
size of point spread function (PSF) 

69



Pixel Scrambling
70

Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993–4003 (2004).

p=0.035



Block-scrambling in 5% Overlap Image 
71

Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993–4003 (2004).

p = 0.0002

p = 0.17

Block-scrambling

Pixel-scrambling

Pixel-scrambling: Wrong conclusion! 
(that overlap is not stat. significant)



Block-scrambling in 20% Overlap Image 
72

Costes, S. V. et al. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 86, 3993–4003 (2004).

Scrambling of either pixels or blocks 
lead to conclusion of statistical 
significance of the  value with 
p=0.0004 and p=0.0002 respectively

rM = 0.21



Random Overlap and “Real” Colocalization
73

Aaron, J. S., Taylor, A. B. & Chew, T.-L. Image co-localization – co-occurrence versus correlation. J. Cell Sci. 131, jcs211847 (2018).

rM = 0.91 < rM > ≈ 0.1
Green scrambled

rM = 0.90 < rM > ≈ 0.9

Scramble green 1000 times

Scramble green 1000 times

rM = 0.91



Costes’ Method

Automatic calculation of thresholds and control for random overlap 
Returns statistical significance (p-value) 

Requires careful preprocessing of image, like Manders 
The two thresholds are not independent (linear dependence) 
Fails: When object don’t overlap or background hard to filter out 
Solution: Object Based and Spatial Statistics 
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Object based

75



Decision Tree
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Beyond Pixels: Object based Analysis

What if you are only interested in the number 
of interacting objects, irrespective of size, 
shape, and intensity? 
Determine each object and decide if it 
interacts with another 

Either segment and look for overlap 
Or, detect and measure distances 

77

Gilles, J.-F., Santos, M. D., Boudier, T., Bolte, 
S. & Heck, N. DiAna, an ImageJ tool for 
object-based 3D co-localization and distance 
analysis. Methods 115, 55–64 (2017).



Pixel versus Object based Analysis
78

Lagache, T., Sauvonnet, N., Danglot, L. & Olivo-Marin, J.-C. Statistical analysis of molecule colocalization in bioimaging. 
Cytometry 87, 568–579 (2015).



Treating Objects as Points
79

Lagache, T., Sauvonnet, N., Danglot, L. & Olivo-Marin, J.-C. Statistical analysis of molecule colocalization in bioimaging. 
Cytometry 87, 568–579 (2015).



Ripley’s K and L Functions

Descriptive statistics for detecting deviations from spatial 
homogeneity 

   and    

For given , the sum gives number of points closer than  

For homogeneous 2D distribution  and  

( : total number of points, : average density) 

K(r) = (nλ)−1 ∑
i≠j

1dij<r L(r) =
K(r)

π

j r
K(r) = πr2 L(r) = r

n λ

80

Tonini, Marj & Pedrazzini, Andrea & Penna, Ivanna & 
Jaboyedoff, Michel. (2012). Spatial pattern of landslides in 
Swiss Rhone Valley. Natural Hazards. 73. 10.1007/
s11069-012-0522-9. 

https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-statistics/h-how-multi-
distance-spatial-cluster-analysis-ripl.htm 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm


Is is really that simple? No!
81

Lagache, T. et al. Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics. Nat. Commun. 9, 698 (2018).



Example 

Treating Objects as Objects
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Decision Tree
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3D Microarchitecture of Bone Marrow Vascular System
84

A. Gomariz, Groups O. Goksel (ETH) and C. Nombela-Arrieta (UZH)

Prof. Cesar Nombela-Arrieta
Alvaro Gomariz 

Results obtained without DL (DL happened while in review):
“Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone 
marrow microenvironment by 3D microscopy”
Gomariz et al
Nature Communications, volume 9, Article number: 2532 (2018)

https://www.nature.com/articles/s41467-018-04770-z


Deep Tissue 3D imaging of thick Bone Marrow Slices 
85

A.	Gomariz,	Groups	O.	Goksel	(ETH)	and	C.	Nombela-Arrieta	(UZH)



Deep Tissue 3D imaging of thick Bone Marrow Slices 
86

Clearing 
cocktail

A.	Gomariz,	Groups	O.	Goksel	(ETH)	and	C.	Nombela-Arrieta	(UZH)



87

A.	Gomariz,	Groups	O.	Goksel	(ETH)	and	C.	Nombela-Arrieta	(UZH)



Result of segmentation with CNN
88

A.	Gomariz,	Groups	O.	Goksel	(ETH)	and	C.	Nombela-Arrieta	(UZH)

White: labeled vessel walls. Blue: DAPI stained DNA 
Red: Segmentation results



Spatial Statistics
89

Alvaro	Gomariz	Carrillo,	UZH	&	ETH

Examining effect of cells interacting with each other



Spatial Statistics
90

The volume is confined by the segmented sinusoidal network (Small World Model).

Alvaro	Gomariz	Carrillo,	UZH	&	ETH

Examining effect of cells interacting with fixed spatial structure



Spatial Statistics
91

Alvaro	Gomariz	Carrillo,	UZH	&	ETH

Attraction

Repulsion

Poisson

Empty space distance transform

Panel (d) gives the “x-axis” (abscissa) in panel (e)



Spatial Statistics - CAR cells relative to sinusoids
92

CARcs accumulate in close physical contact with sinusoidal vessel walls.  
b Rotated 3D view of a rendered volume from the segmented image  
c Side-by-side comparison of the CDF of the distance to nearest sinusoid evaluated at all 
positions, as well as evaluated at CARc centroids. Solid lines represent mean distance and 
envelopes indicate standard deviations.

A.	Gomariz	et	al,	Nature	Communications	9,	407	(2018).



From Research to Software

This analysis was done in MATLAB with Imaris (Bitplane) 
Bitplane then worked directly with Alvaro Gomariz 
Now, a spatial statistics module is available in Imaris 

Measures distances, performs 3D randomizations, returns 
probability distributions for experimental and simulated results
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Object based and Spatial Statistics
Very powerful and flexible 
Goes beyond standard colocalization 

Mathematically demanding to do right 
Requires segmentation or localization of objects 

Fails: When objects cannot be defined/segmented 
Solution: Manders, Costes, better image analysis or data 
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Pixels versus Object- and Spatial-Analysis

Pixel based 
Requires images to be carefully corrected first 
(Deceptively) easy and flexible to apply 

Object based 
Requires segmentation or detection 
Allows for full statistical analysis w. significance testing 
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Minimizing Imaging Artifacts
96

From slides by Romain Guiet, BIOP, EPFL



Software & Resources
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ICY: Colocalization Studio & Spatial Analysis
98

https://icy.bioimageanalysis.org/ 

https://icy.bioimageanalysis.org/


ImageJ/Fiji: Coloc 2 ,  DiAna, JACoP
99

https://imagej.net/plugins/coloc-2 https://imagej.net/plugins/jacop 

https://imagej.net/plugins/distance-analysis 

https://imagej.net/plugins/coloc-2
https://imagej.net/plugins/jacop
https://imagej.net/plugins/distance-analysis


Imaris: Spatial Statistics
100

https://imaris.oxinst.com/ 

Expensive software. IAC has a full license

https://imaris.oxinst.com/


Final Words

“The first principle is that you must not fool yourself and you are 
the easiest person to fool.”  
― Richard P. Feynman 

User-friendly software doesn't mean fool-proof results! 
You will always get numbers, but what do they mean? 

Hopefully you have a better idea now!
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Further Learning (https://iac.hms.harvard.edu/resources/) 

Forum: Knowledge exchange and support 

○ https://forum.image.sc/  

Online book with code: Introduction to Bioimage Analysis 

○ https://bioimagebook.github.io/  

Online training: NEUBIAS Academy   

○ https://www.youtube.com/c/NEUBIAS  

○ Deconstructing co-localisation workflows: A journey into the black boxes 

○ Introduction to 3D Analysis with 3D ImageJ Suite

https://iac.hms.harvard.edu/resources/
https://forum.image.sc/
https://bioimagebook.github.io/
https://www.youtube.com/c/NEUBIAS
https://www.youtube.com/watch?v=P2JvFe0hB_M
https://www.youtube.com/watch?v=OPC2kP-5By4


Inference 

(plausible reasoning)
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It is not Causal Analysis

Doesn’t address interactions directly 
Cannot say if A causes B or vice versa 

At best says how different from random the 
signal co-variation (intensity/location) is 
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Aristotelian Deductive Reasoning 

Two strong syllogisms  

Major premise:  if  is true, then  is true  

Minor premise:   is true (  is false) 

Conclusion:      therefore,  is true (  is false) 

Condensed form: 

A B
A B

B A

A ⟹ B ⟺ B̄ ⟹ Ā
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Aristotelian Deductive Reasoning 

Major: If it rains ( ), the pavement will get wet ( )  

Minor: It rains ( ) 

Conclusion: Therefore, the pavement will get wet ( ) 

Major: If it rains ( ), the pavement will get wet ( ) 

Minor: The pavement is not wet ( ) 

Conclusion: Therefore, it didn’t rain ( ) 

A B
A

B

A B
B̄

Ā
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Plausible Reasoning 

Two weak syllogisms  

Major premise:  if  is true, then  is true  

Minor premise:   is true (  is false) 

Conclusion:      therefore,  becomes more plausible 
(  becomes less plausible)

A B
B A

A
B
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Plausible Reasoning 

Major: If it rains ( ), the pavement will get wet ( )  

Minor: The pavement is wet ( ) 

Conclusion: Therefore, it is more plausible that it rained ( ) 
But it could have been a garden sprinkler and not rain 

Major: If it rains ( ), the pavement will get wet ( ) 

Minor: It didn’t rain ( ) 

Conclusion: Therefore, it is less plausible that the pavement will be wet ( ) 
But the pavement could have been made wet by other means

A B
B

A

A B
Ā

B
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Plausible Reasoning 

An even weaker syllogism 

Major premise:  If  is true, then  becomes more plausible 

Minor premise:   is true 

Conclusion:      therefore,  becomes more plausible

A B
B

A
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Plausible Reasoning

Major: If it rains ( ), the pavement is more likely to get wet ( )  

Minor: The pavement is wet ( ) 

Conclusion: Therefore, it is more plausible that it rained ( ) 
Maybe the pavement is covered by a tarp 

Maybe a garden sprinkler was active nearby

A B
B

A
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Probability Theory

Jaynes derives two fundamental equations 
From which follow Bayes’ and just about all else 

Product rule 

 
Sum rule 
p(AB |C) = p(A |C)p(B |AC) = p(B |C)p(A |BC)

p(A |B) + p(Ā |B) = 1
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Aristotelian Logic and the Product Rule
Let  stand for the major premise 

  

Then, note that, according to the strong syllogisms 

   and that  

Insert in product rule and get: 

Strong syllogism 1:    

Strong syllogism 2:   

C
C ≡ A ⟹ B

p(AB |C) = p(A |C) p(AB̄ |C) = 0

p(B |AC) =
p(AB |C)
p(A |C)

= 1

p(A | B̄C) =
p(AB̄ |C)
p(B̄ |C)

= 0
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Plausible Reasoning and the Product Rule

Let  stand for the major premise 

  
The product rule states  

 

According to the first weak syllogism and overall definition of  

 ( ) and   (generally) 
Insert in product rule and get: 

Weak syllogism 1:   

C
C ≡ A ⟹ B

p(A |BC) = p(A |C)
p(B |AC)
p(B |C)

p
p(B |AC) = 1 A ⟹ B p(B |C) ≤ 1

p(A |BC) ≥ p(A |C)
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Probability Theory

From the these follow the very useful 
Extended sum rule 

 

Directly applicable to colocalization questions

p(A + B |C) = p(A |C) + p(B |C) − p(AB |C)
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